然而这是一道网络流。。。

如果满足Bob,使总费用最大:

设最大流的每条边流量(不是容量)为w[i],分配到每条边的费用为p[i],最大流量为wmax,p[i]的和为P

那么显然w[i] * p[i]的和小于等于wmax * P

证明:

\[wmax * P = \sum wmax * p[i].....................(1)
\]

\[(1) - \sum w[i]*p[i] = \sum (wmax - w[i]) * p[i] \ge 0
\]

证毕

那么如果满足Alice,使总费用最小

就只要使得最大流中最大的流量的边的流量最小

于是二分这个最小流量,把所有边的容量对它取min后跑一遍容量为分数的最大流,与原本的最大流比较即可


# include <bits/stdc++.h>
# define IL inline
# define RG register
# define Fill(a, b) memset(a, b, sizeof(a))
# define Copy(a, b) memcpy(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(110), __(2010), INF(2147483647); IL ll Read(){
RG char c = getchar(); RG ll x = 0, z = 1;
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} int n, m, fst[_], nxt[__], to[__], cnt, A[__], B[__], p, S, T, lev[_], cur[_];
double C[__], w[__], max_flow, ans;
queue <int> Q; IL void Add(RG int u, RG int v, RG double f){
w[cnt] = f; to[cnt] = v; nxt[cnt] = fst[u]; fst[u] = cnt++;
w[cnt] = 0; to[cnt] = u; nxt[cnt] = fst[v]; fst[v] = cnt++;
} IL double Dfs(RG int u, RG double maxf){
if(u == T) return maxf;
RG double ret = 0;
for(RG int &e = cur[u]; e != -1; e = nxt[e]){
if(lev[to[e]] != lev[u] + 1 || !w[e]) continue;
RG double f = Dfs(to[e], min(w[e], maxf - ret));
ret += f; w[e ^ 1] += f; w[e] -= f;
if(ret == maxf) break;
}
if(!ret) lev[u] = 0;
return ret;
} IL bool Bfs(){
Fill(lev, 0); lev[S] = 1; Q.push(S);
while(!Q.empty()){
RG int u = Q.front(); Q.pop();
for(RG int e = fst[u]; e != -1; e = nxt[e]){
if(lev[to[e]] || !w[e]) continue;
lev[to[e]] = lev[u] + 1;
Q.push(to[e]);
}
}
return lev[T];
} IL double Check(RG double x){
Fill(fst, -1); cnt = 0;
for(RG int i = 1; i <= m; i++) Add(A[i], B[i], min(C[i], x));
for(max_flow = 0; Bfs(); ) Copy(cur, fst), max_flow += Dfs(S, INF);
return max_flow;
} int main(RG int argc, RG char* argv[]){
n = Read(); m = Read(); p = Read(); S = 1; T = n;
for(RG int i = 1; i <= m; i++) A[i] = Read(), B[i] = Read(), C[i] = Read();
ans = Check(INF);
RG double l = 0, r = 1000000;
while(r - l >= 1e-6){
RG double mid = (l + r) / 2;
if(ans == Check(mid)) r = mid;
else l = mid;
}
printf("%.0lf\n%.4lf\n", ans, l * p);
return 0;
}

[SDOI2013]费用流的更多相关文章

  1. BZOJ3130: [Sdoi2013]费用流[最大流 实数二分]

    3130: [Sdoi2013]费用流 Time Limit: 10 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 960  Solved: 5 ...

  2. bzoj千题计划133:bzoj3130: [Sdoi2013]费用流

    http://www.lydsy.com/JudgeOnline/problem.php?id=3130 第一问就是个最大流 第二问: Bob希望总费用尽量大,那肯定是把所有的花费加到流量最大的那一条 ...

  3. P3305 [SDOI2013]费用流

    题目描述 Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识. 最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量. 一个合法的网络流方案必须满足: ...

  4. luogu P3305 [SDOI2013]费用流

    题目链接 bz似乎挂了... luogu P3305 [SDOI2013]费用流 题解 dalao告诉我,这题 似乎很水.... 懂了题目大意就可以随便切了 问1,最大流 问2,二分最大边权求,che ...

  5. BZOJ 3130: [Sdoi2013]费用流 网络流+二分

    3130: [Sdoi2013]费用流 Time Limit: 10 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1230  Solved: ...

  6. BZOJ 3130: [Sdoi2013]费用流 网络流 二分 最大流

    https://www.lydsy.com/JudgeOnline/problem.php?id=3130 本来找费用流的题,权当复习一下网络流好了. 有点麻烦的是double,干脆判断大小或者二分增 ...

  7. BZOJ3130 [Sdoi2013]费用流

    AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=3130 这题codevs上也有,不过数据挂了[要A得看discuss]. 题目大意: Ali ...

  8. bzoj 3130 [Sdoi2013]费用流(二分,最大流)

    Description Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识.    最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量.一个合法的网络 ...

  9. Luogu P3305 [SDOI2013]费用流 二分 网络流

    题目链接 \(Click\) \(Here\) 非常有趣的一个题目. 关键结论:所有的单位费用应该被分配在流量最大的边上. 即:在保证最大流的前提下,使最大流量最小.这里我们采用二分的方法,每次判断让 ...

随机推荐

  1. TensorFlow实战之实现自编码器过程

    关于本文说明,已同步本人另外一个博客地址位于http://blog.csdn.net/qq_37608890,详见http://blog.csdn.net/qq_37608890/article/de ...

  2. git 版本控制的简单应用

    一.通过 honebrew 安装git , 教程参考:http://brew.sh/index_zh-cn.html 也可对比参考:http://book.51cto.com/art/201107/2 ...

  3. iOS "此证书由未知颁发机构签名"此问题的解决方法

    前段时间制作证书时把以前钥匙串中的证书全删除了,然后在制作新证书的时候就出现了"此证书由未知颁发机构签名"的红色警告,通过查找资料发现出现此问题的原因是:我把钥匙串中的此证书给删除 ...

  4. python学习:使用正则收集ip信息

        使用正则表达式收集主机信息        #!/usr/bin/env python   from subprocess import Popen, PIPE import re def ge ...

  5. Linux系统Go开发环境搭建

    Go 语言是由谷歌的科学家开发的,并开源的新语言,被誉为"21世纪的C语言",它的主要目标是将静态语言的安全性和高效性与动态语言的易开发性进行有机结合,达到完美平衡,从而使编程变得 ...

  6. PH日期格式化

    %M 月名字(January--December) %W 星期名字(Sunday--Saturday) %D 有英语前缀的月份的日期(1st, 2nd, 3rd, 等等.) %Y 年, 数字, 4 位 ...

  7. dedecms在任意页面调用任意栏目文章

    dedecms在任意页面调用任意栏目文章,我们用arclist标签即可实现.如果是调用多个栏目文章可以给typeid多个值. 我们以调用ID为1和ID为30的两个栏目下5篇文章为例: {dede:ar ...

  8. POJ 1023 The Fun Number System

    Description In a k bit 2's complement number, where the bits are indexed from 0 to k-1, the weight o ...

  9. 奥酷HTML5视频直播系统AMS6.0

    今日,北极星通自主研发的流媒体服务系统Aoku Media Server6.0发布了,将正式支持HTML5直播,这使得网页中无需有flash播放插件或者其他插件,可直接观看直播,HTML5直播也会使得 ...

  10. RAC节点两边存储名字不一致导致的故障及相关延伸

    起因:一个客户的实际故障,该故障非常典型,其他客户类似的环境也非常多,所以很值得梳理并记录下来. 环境:Oracle 11.2.0.4 RAC(2 nodes)+ RHEL 6.6 共享存储:EMC ...