kafka HA
1、 replication
如图.1所示,同一个 partition 可能会有多个 replica(对应 server.properties 配置中的 default.replication.factor=N)。没有 replica 的情况下,一旦 broker 宕机,其上所有 patition 的数据都不可被消费,同时 producer 也不能再将数据存于其上的 patition。引入replication 之后,同一个 partition 可能会有多个 replica,而这时需要在这些 replica 之间选出一个 leader,producer 和 consumer 只与这个 leader 交互,其它 replica 作为 follower 从 leader 中复制数据。
Kafka 分配 Replica 的算法如下:
1. 将所有 broker(假设共 n 个 broker)和待分配的 partition 排序
2. 将第 i 个 partition 分配到第(i mod n)个 broker 上
3. 将第 i 个 partition 的第 j 个 replica 分配到第((i + j) mode n)个 broker上
2 leader failover
当 partition 对应的 leader 宕机时,需要从 follower 中选举出新 leader。在选举新leader时,一个基本的原则是,新的 leader 必须拥有旧 leader commit 过的所有消息。
kafka 在 zookeeper 中(/brokers/.../state)动态维护了一个 ISR(in-sync replicas),由3.3节的写入流程可知 ISR 里面的所有 replica 都跟上了 leader,只有 ISR 里面的成员才能选为 leader。对于 f+1 个 replica,一个 partition 可以在容忍 f 个 replica 失效的情况下保证消息不丢失。
当所有 replica 都不工作时,有两种可行的方案:
1. 等待 ISR 中的任一个 replica 活过来,并选它作为 leader。可保障数据不丢失,但时间可能相对较长。
2. 选择第一个活过来的 replica(不一定是 ISR 成员)作为 leader。无法保障数据不丢失,但相对不可用时间较短。
kafka 0.8.* 使用第二种方式。
kafka 通过 Controller 来选举 leader,流程请参考5.3节。
3 broker failover
kafka broker failover 序列图如下所示:

图.7
流程说明:
1. controller 在 zookeeper 的 /brokers/ids/[brokerId] 节点注册 Watcher,当 broker 宕机时 zookeeper 会 fire watch
2. controller 从 /brokers/ids 节点读取可用broker
3. controller决定set_p,该集合包含宕机 broker 上的所有 partition
4. 对 set_p 中的每一个 partition
4.1 从/brokers/topics/[topic]/partitions/[partition]/state 节点读取 ISR
4.2 决定新 leader(如4.3节所描述)
4.3 将新 leader、ISR、controller_epoch 和 leader_epoch 等信息写入 state 节点
5. 通过 RPC 向相关 broker 发送 leaderAndISRRequest 命令
4 controller failover
当 controller 宕机时会触发 controller failover。每个 broker 都会在 zookeeper 的 "/controller" 节点注册 watcher,当 controller 宕机时 zookeeper 中的临时节点消失,所有存活的 broker 收到 fire 的通知,每个 broker 都尝试创建新的 controller path,只有一个竞选成功并当选为 controller。
当新的 controller 当选时,会触发 KafkaController.onControllerFailover 方法,在该方法中完成如下操作:
1. 读取并增加 Controller Epoch。
2. 在 reassignedPartitions Patch(/admin/reassign_partitions) 上注册 watcher。
3. 在 preferredReplicaElection Path(/admin/preferred_replica_election) 上注册 watcher。
4. 通过 partitionStateMachine 在 broker Topics Patch(/brokers/topics) 上注册 watcher。
5. 若 delete.topic.enable=true(默认值是 false),则 partitionStateMachine 在 Delete Topic Patch(/admin/delete_topics) 上注册 watcher。
6. 通过 replicaStateMachine在 Broker Ids Patch(/brokers/ids)上注册Watch。
7. 初始化 ControllerContext 对象,设置当前所有 topic,“活”着的 broker 列表,所有 partition 的 leader 及 ISR等。
8. 启动 replicaStateMachine 和 partitionStateMachine。
9. 将 brokerState 状态设置为 RunningAsController。
10. 将每个 partition 的 Leadership 信息发送给所有“活”着的 broker。
11. 若 auto.leader.rebalance.enable=true(默认值是true),则启动 partition-rebalance 线程。
12. 若 delete.topic.enable=true 且Delete Topic Patch(/admin/delete_topics)中有值,则删除相应的Topic。
kafka HA的更多相关文章
- 7.kafka HA
- kafka学习笔记:知识点整理
一.为什么需要消息系统 1.解耦: 允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束. 2.冗余: 消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险. ...
- Kafka设计解析(二)- Kafka High Availability (上)
本文转发自Jason’s Blog,原文链接 http://www.jasongj.com/2015/04/24/KafkaColumn2 摘要 Kafka在0.8以前的版本中,并不提供High Av ...
- 【转载】Kafka High Availability
http://www.haokoo.com/internet/2877400.html Kafka在0.8以前的版本中,并不提供High Availablity机制,一旦一个或多个Broker宕机,则 ...
- kafka原理深入研究 (转 )
一.为什么需要消息系统 1.解耦: 允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束. 2.冗余: 消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险. ...
- kafka知识点
一.为什么需要消息系统 1.解耦: 允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束. 2.冗余: 消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险. ...
- [Kafka] [All about it]
Overview 设计目标: 以O(1) 常数级时间复杂度的访问性能,提供消息持久化能力. 高吞吐率. 支持 kafka server 间的消息分区,及分布式消费,同时保证每个partition内部的 ...
- Kafka基本架构及原理
本文转载自http://www.cnblogs.com/cyfonly/p/5954614.html 一.为什么需要消息系统 1.解耦: 允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的 ...
- kafka 学习笔记
一.为什么需要消息系统 1.解耦: 允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束. 2.冗余: 消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险. ...
随机推荐
- c标准头文件
好多C语言库函数参考还是用的TC的库函数参考,因此特地把现在C语言(C99)标准库函数的24个头文件列表如下:assert.h types.h(C99) signal.h stdlib.h c ...
- Firefox书签同步工具Xmarks
Xmarks作为Firefox最受欢迎的社会化书签扩展之一,其前身为Foxmarks,并且显著的增加了它的功能.Xmarks已被LastPass(领先的密码和数据管理)收购. 之前一直是只使用火狐浏览 ...
- 如何在eclipse中添加ADT
工具: Eclipse:官网下载地址:http://www.eclipse.org/downloads/下载SE或者EE版本的都可以 ADT:因为涉及到FQ问题,所以这里我给出一个参考网址:http: ...
- SparkHiveContext和直接Spark读取hdfs上文件然后再分析效果区别
最近用spark在集群上验证一个算法的问题,数据量大概是一天P级的,使用hiveContext查询之后再调用算法进行读取效果很慢,大概需要二十多个小时,一个查询将近半个小时,代码大概如下: try: ...
- Ubuntu上将终端安装到右键上
Ubuntu上将终端安装到右键上 author:headsen chen 2017-10-12 10:26:12 个人原创,允许转载,请注明作者和出处,否则依法追究法律责任 chen@chen ...
- npm包使用语义化版本号
npm 采用语义版本管理软件包.所谓语义版本,就是指版本号为a.b.c的形式,其中a是大版本号,b是小版本号,c是补丁号. 一个软件发布的时候,默认就是1.0.0版.如果以后发布补丁,就增加最后一位数 ...
- kvm之十二:虚拟机迁移
虚拟机迁移该方式要确保虚拟机是关机状态.virsh shutdown snalevirsh dumpxml snale > /etc/libvirt/qemu/snale_qy.xml // ...
- vue 2.0之基础
Vue Vue实例 创建实例: var vm = new Vue({ //code }) 数据与方法: 只有当实例被创建时 data 中存在的属性才是响应式的; Vm.b = 'h1' 是不会触发视图 ...
- Java基础学习(二)
软件设计原则: 为了提高软件的开发效率,降低软件开发成本,一个优良的软件系统应该具有以下特点: 1,可重用性:遵循DRY原则,减少软件中的重复代码. 2,可拓展性:当软件需要升级增加新的功能,能够在现 ...
- Leetcode 1——twosum
Given an array of integers, return indices of the two numbers such that they add up to a specific ta ...