【BZOJ3238】差异(后缀自动机)

题面

BZOJ

题解

前面的东西直接暴力算就行了

其实没必要算的正正好

为了方便的后面的计算

我们不考虑\(i,j\)的顺序问题

也就是先求出\(\sum_{i=1}^n\sum_{j=1}^n[i\neq j]len[i]\)

然后对于每个后缀树上的节点,减去一下贡献

也就是\(size[i]*(size[i]-1)*(len[i]-len[i.parent])\)

这样的话,就很容易计算了。。

我知道我写的一点都不清楚

构建出\(SAM\)后,\(parent\)树反过来其实就是后缀树

两个后缀的\(lcp\)就是他们在后缀树上\(lca\)的深度

所以前面的应该好理解一点点了。。。。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 500500
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Node
{
int son[26];
int ff,len;
}t[MAX<<1];
char ch[MAX];
int a[MAX<<1],c[MAX<<1],size[MAX<<1];
int last=1,tot=1;
void extend(int c)
{
int p=last,np=++tot;last=np;
t[np].len=t[p].len+1;
while(p&&!t[p].son[c])t[p].son[c]=np,p=t[p].ff;
if(!p)t[np].ff=1;
else
{
int q=t[p].son[c];
if(t[q].len==t[p].len+1)t[np].ff=q;
else
{
int nq=++tot;
t[nq]=t[q];
t[nq].len=t[p].len+1;
t[q].ff=t[np].ff=nq;
while(p&&t[p].son[c]==q)t[p].son[c]=nq,p=t[p].ff;
}
}
size[np]=1;
}
long long ans;
int main()
{
scanf("%s",ch+1);
int L=strlen(ch+1);
for(int i=L;i;--i)extend(ch[i]-97);
for(int i=1;i<=tot;++i)c[t[i].len]++;
for(int i=1;i<=tot;++i)c[i]+=c[i-1];
for(int i=1;i<=tot;++i)a[c[t[i].len]--]=i;
for(int i=tot;i;--i)size[t[a[i]].ff]+=size[a[i]];
for(int i=1;i<=L;++i)ans+=1ll*i*(L-1);
for(int i=2;i<=tot;++i)ans-=1ll*(size[i]-1)*size[i]*(t[i].len-t[t[i].ff].len);
printf("%lld\n",ans);
return 0;
}

【BZOJ3238】差异(后缀自动机)的更多相关文章

  1. [bzoj3238][Ahoi2013]差异——后缀自动机

    Brief Description Algorithm Design 下面给出后缀自动机的一个性质: 两个子串的最长公共后缀,位于这两个串对应的状态在parent树上的lca状态上.并且最长公共后缀的 ...

  2. [Ahoi2013]差异(后缀自动机)

    /* 前面的那一坨是可以O1计算的 后面那个显然后缀数组单调栈比较好写??? 两个后缀的lcp长度相当于他们在后缀树上的lca的深度 那么我们就能够反向用后缀自动机构造出后缀树然后统计每个点作为lca ...

  3. 洛谷P4248 [AHOI2013]差异(后缀自动机求lcp之和)

    题目见此 题解:首先所有后缀都在最后一个np节点,然后他们都是从1号点出发沿一些字符边到达这个点的,所以下文称1号点为根节点,我们思考一下什么时候会产生lcp,显然是当他们从根节点开始一直跳相同节点的 ...

  4. BZOJ 3238 [Ahoi2013]差异 ——后缀自动机

    后缀自动机的parent树就是反串的后缀树. 所以只需要反向构建出后缀树,就可以乱搞了. #include <cstdio> #include <cstring> #inclu ...

  5. [AHOI2013]差异 后缀自动机_Parent树

    题中要求: $\sum_{1\leqslant i < j \leq n } Len(T_{i}) +Len(T_{j})-2LCP(T_{i},T_{j})$ 公式左边的部分很好求,是一个常量 ...

  6. BZOJ3238: [Ahoi2013]差异(后缀自动机)

    题意 题目链接 Sol 前面的可以直接算 然后原串翻转过来,这时候变成了求任意两个前缀的最长公共后缀,显然这个值应该是\(len[lca]\),求出\(siz\)乱搞一下 #include<bi ...

  7. BZOJ 3238: [Ahoi2013]差异 [后缀自动机]

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2512  Solved: 1140[Submit][Status ...

  8. BZOJ.3238.[AHOI2013]差异(后缀自动机 树形DP/后缀数组 单调栈)

    题目链接 \(Description\) \(Solution\) len(Ti)+len(Tj)可以直接算出来,每个小于n的长度会被计算n-1次. \[\sum_{i=1}^n\sum_{j=i+1 ...

  9. BZOJ 3238: [Ahoi2013]差异 后缀自动机 树形dp

    http://www.lydsy.com/JudgeOnline/problem.php?id=3238 就算是全局变量,也不要忘记,初始化(吐血). 长得一副lca样,没想到是个树形dp(小丫头还有 ...

  10. 【BZOJ 3238】差异 后缀自动机+树形DP

    题意 给定字符串,令$s_i$表示第$i$位开始的后缀,求$\sum_{1\le i < j \le n} len(s_i)+len(s_j)-2\times lcp(s_i,s_j)$ 先考虑 ...

随机推荐

  1. 【ASP.NET Core】处理异常(上篇)

    依照老周的良好作风,开始之前先说点题外话. 前面的博文中,老周介绍过自定义 MVC 视图的搜索路径,即向 ViewLocationFormats 列表添加相应的内容,其实,对 Razor Page 模 ...

  2. Linux中7个用来浏览网页和下载文件的命令

    上一篇文章中,我们提到了rTorrent.wget.cURL.w3m.Elinks等几个有用的工具,很多人回信说还有其它几个类似的工具也值得讨论,所以就有了这篇文章.如果错过了第一部分的讨论,可以通过 ...

  3. unity爬坑记录

    这里记一下平时遇到的unity bug: unity2017最好不要在prefab上面修改它上面的组件参数 最好是拖放到场景之后修改场景内的物体组件参数 完事了apply一下删掉 不这样做的话 可能u ...

  4. CSS预处理器之Less详解

    本文最初发表于博客园,并在GitHub上持续更新前端的系列文章.欢迎在GitHub上关注我,一起入门和进阶前端. 以下是正文. CSS 预处理器 为什么要有 CSS 预处理器 CSS基本上是设计师的工 ...

  5. java3 - 流程控制

    一.Java 有三种主要的循环结构: 需求:分别使用三种循环将 1 到 100 的整数输出到控制台. 1.for 循环 for(初始化语句; 布尔表达式语句; 更新语句) { //循环体内容 } 示列 ...

  6. yum源配置的三种方法

    (一)yum源概述 yum需要一个yum库,也就是yum源.默认情况下,CentOS就有一个yum源.在/etc/yum.repos.d/目录下有一些默认的配置文件(可以将这些文件移到/opt下,或者 ...

  7. linux主机名为bogon的原因及修改方法

    今天登录linux,发现主机名是bogon,虽然不影响使用,但是看着很不爽,于是想了解一下,为什么会发生这种情况,在csdn上找了到了一个文章,原文如下: 起因:公司网络接口做了接口认证,虚拟机桥接至 ...

  8. HashMap/HashSet,hashCode,哈希表

    hash code.equals和“==”三者的关系 1) 对象相等则hashCode一定相等: 2) hashCode相等对象未必相等. == 是比较地址是否相等,JAVA中声明变量都是引用嘛,不同 ...

  9. APICloud常用模块

    常用模块 基础 fs db 支付 wxPay aliPay unionPay 消息 ajpush rongCloud2

  10. 常用u-boot命令详解(全) 2

    (8) USB 操作指令 指令 功能 usb reset 初始化USB控制器 usb stop [f] 关闭USB控制器 usb tree 已连接的USB设备树 usb info [dev] 显示US ...