Given an integer n, return the number of trailing zeroes in n!.

Example 1:

Input: 3
Output: 0
Explanation: 3! = 6, no trailing zero.

Example 2:

Input: 5
Output: 1
Explanation: 5! = 120, one trailing zero.

Note: Your solution should be in logarithmic time complexity.

Credits:
Special thanks to @ts for adding this problem and creating all test cases.

这道题并没有什么难度,是让求一个数的阶乘末尾0的个数,也就是要找乘数中 10 的个数,而 10 可分解为2和5,而2的数量又远大于5的数量(比如1到 10 中有2个5,5个2),那么此题即便为找出5的个数。仍需注意的一点就是,像 25,125,这样的不只含有一个5的数字需要考虑进去,参加代码如下:

C++ 解法一:

class Solution {
public:
int trailingZeroes(int n) {
int res = ;
while (n) {
res += n / ;
n /= ;
}
return res;
}
};

Java 解法一:

public class Solution {
public int trailingZeroes(int n) {
int res = 0;
while (n > 0) {
res += n / 5;
n /= 5;
}
return res;
}
}

这题还有递归的解法,思路和上面完全一样,写法更简洁了,一行搞定碉堡了。

C++ 解法二:

class Solution {
public:
int trailingZeroes(int n) {
return n == ? : n / + trailingZeroes(n / );
}
};

Java 解法二:

public class Solution {
public int trailingZeroes(int n) {
return n == 0 ? 0 : n / 5 + trailingZeroes(n / 5);
}
}

Github 同步地址:

https://github.com/grandyang/leetcode/issues/172

类似题目:

Number of Digit One

Preimage Size of Factorial Zeroes Function

参考资料:

https://leetcode.com/problems/factorial-trailing-zeroes/

https://leetcode.com/problems/factorial-trailing-zeroes/discuss/52371/My-one-line-solutions-in-3-languages

https://leetcode.com/problems/factorial-trailing-zeroes/discuss/52373/Simple-CC%2B%2B-Solution-(with-detailed-explaination)

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Factorial Trailing Zeroes 求阶乘末尾零的个数的更多相关文章

  1. [LeetCode] 172. Factorial Trailing Zeroes 求阶乘末尾零的个数

    Given an integer n, return the number of trailing zeroes in n!. Example 1: Input: 3 Output: 0 Explan ...

  2. [CareerCup] 17.3 Factorial Trailing Zeros 求阶乘末尾零的个数

    LeetCode上的原题,讲解请参见我之前的博客Factorial Trailing Zeroes. 解法一: int trailing_zeros(int n) { ; while (n) { re ...

  3. LeetCode 172. Factorial Trailing Zeroes (阶乘末尾零的数量)

    Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in log ...

  4. 172. Factorial Trailing Zeroes(阶乘中0的个数 数学题)

    Given an integer n, return the number of trailing zeroes in n!. Example 1: Input: 3 Output: 0 Explan ...

  5. LightOj 1138 - Trailing Zeroes (III) 阶乘末尾0的个数 & 二分

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1138 题意:给你一个数n,然后找个一个最小的数x,使得x!的末尾有n个0:如果没有输出 ...

  6. Algorithm --> 求阶乘末尾0的个数

    求阶乘末尾0的个数 (1)给定一个整数N,那么N的阶乘N!末尾有多少个0?比如:N=10,N!=3628800,N!的末尾有2个0. (2)求N!的二进制表示中最低位为1的位置. 第一题 考虑哪些数相 ...

  7. LeetCode Factorial Trailing Zeroes Python

    Factorial Trailing Zeroes Given an integer n, return the number of trailing zeroes in n!. 题目意思: n求阶乘 ...

  8. [LeetCode] Factorial Trailing Zeroes 阶乘末尾0

    Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in log ...

  9. 172. Factorial Trailing Zeroes -- 求n的阶乘末尾有几个0

    Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in log ...

随机推荐

  1. NGUI学习笔记(一)UILabel介绍

    来个前言: 作为一个U3D程序员,自然要写一写U3D相关的内容了.想来想去还是从UI开始搞起,可能这也是最直观同时也最重要的部分之一了.U3D自带的UI系统,也许略坑,也没有太多介绍的价值,那么从今天 ...

  2. Moon.Orm 常见查询实例

    一.Moon.Orm框架总述 (您还用hibernate?实体框架?) 1.框架名:Moon 意思是月亮,而非Mono.因为很喜欢明月,所以以此为名.它是一个.NET下的Orm框架. 2.发展历史:历 ...

  3. 自己手写的自动完成js类

    在web开发中,为了提高用户体验,会经常用到输入框的自动完成功能,不仅帮助用户进行快速输入,最重要的是帮助那些“记不全要输入什么”的用户进行选择.这个功能有很多插件已经实现了,为了适应项目的特殊需求, ...

  4. Github Pages和Hexo创建静态博客网站

    Github Pages和Hexo创建静态博客网站 安装Node.js 本人是window环境,所以下载window版. 下载地址:https://nodejs.org/en/download/ 下载 ...

  5. C#开发微信门户及应用(36)--微信卡劵管理的封装操作

    前面几篇介绍了微信支付方面的内容,本篇继续微信接口的一些其他方面的内容:卡劵管理.卡劵管理是微信接口里面非常复杂的一个部分,里面的接口非常多,我花了不少时间对它进行了封装处理,重构优化等等工作,卡劵在 ...

  6. JDBC——Java代码与数据库链接的桥梁

    常用数据库的驱动程序及JDBC URL: Oracle数据库: 驱动程序包名:ojdbc14.jar 驱动类的名字:oracle.jdbc.driver.OracleDriver JDBC URL:j ...

  7. transformjs玩转星球

    如你所见.这篇就是要讲下使用transformjs制作星球的过程.你也可以无视文章,直接去看源码和在线演示: 源码 | 在线演示 代码100行多一点,直接看也没有什么压力.下面分几步讲解下. 生成球上 ...

  8. swing with transformjs

    Antecedent Facebook made a HTML5 game long time ago. The opening animation is a piece of software th ...

  9. iOS 小谈开发者中的个人、组织(公司、企业)账号

    苹果对开发者主要分为3类:个人.组织(公司.企业).教育机构.即: 1.个人(Individual) 2.组织(Organizations) 组织类又分为2个小类: (1)公司(Company) (2 ...

  10. 当Eclipse报版本低时的处理方法

    http://blog.sina.com.cn/s/blog_6f0c85e10100v6pv.html 更新到API12的时候出过问题,这一次难免又会出现了,不过我的版本还真全啊,哇咔咔~   这里 ...