洛谷P1879 [USACO06NOV]玉米田Corn Fields【状压DP】题解+AC代码
题目描述
Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ≤ 12) square parcels. He wants to grow some yummy corn for the cows on a number of squares. Regrettably, some of the squares are infertile and can't be planted. Canny FJ knows that the cows dislike eating close to each other, so when choosing which squares to plant, he avoids choosing squares that are adjacent; no two chosen squares share an edge. He has not yet made the final choice as to which squares to plant.
Being a very open-minded man, Farmer John wants to consider all possible options for how to choose the squares for planting. He is so open-minded that he considers choosing no squares as a valid option! Please help Farmer John determine the number of ways he can choose the squares to plant.
农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ 12; 1 ≤ N ≤ 12),每一格都是一块正方形的土地。John打算在牧场上的某几格里种上美味的草,供他的奶牛们享用。
遗憾的是,有些土地相当贫瘠,不能用来种草。并且,奶牛们喜欢独占一块草地的感觉,于是John不会选择两块相邻的土地,也就是说,没有哪两块草地有公共边。
John想知道,如果不考虑草地的总块数,那么,一共有多少种种植方案可供他选择?(当然,把新牧场完全荒废也是一种方案)
输入格式:
第一行:两个整数M和N,用空格隔开。
第2到第M+1行:每行包含N个用空格隔开的整数,描述了每块土地的状态。第i+1行描述了第i行的土地,所有整数均为0或1,是1的话,表示这块土地足够肥沃,0则表示这块土地不适合种草。
输出格式:
一个整数,即牧场分配总方案数除以100,000,000的余数。
输入样例
2 3
1 1 1
0 1 0
输出样例
9
题目分析
这里我们同样以一个二进制数表示每个状态
1表示种了草,0表示没有
dp[i][j]表示只考虑前i行
第i行状态为j时可行的总方案数
有dp数组定义得出递推式
if(j合法 && k合法 && j,k不冲突)
dp[i][j]+=dp[i-1][k];
则最后ans等于sigma (dp[n][j]) 其中 0 <= j <= (1<< n)-1
关于状态x是否合法的判断
if( (( x&(x<<1) )==0) && (( x&(x>>1) )==0) ) return true;
else return false;
即将x分别左移和右移
若x二进制中某相邻两位皆为1
则左/右移后两位重合,&运算必定返回1,表示不合法
(这里括号比较多,如果不是特别确定位运算优先级,建议将括号都打上,特别注意==比位运算优先级高)
如果实在觉得乱,可以这样写
bool check(int x)
{
if( x & (x<<1) ) return false;
if( x & (x>>1) ) return false;
return true;
}
接下来还要判断状态x是否与土地情况冲突
我们在读入时记录f[i]表示第i行的土地情况
注意我们用1表示不能种,0表示能种
这样我们判断状态x是否合法可以这样
if((j&f[i])==0 )return true;
else return false;
因为我们只关心不能种草的位是否合法
所以这么做能种草的地方一定返回0
而如果状态x在不能种草的地方种了草(该位为1)
则位运算必定返回1
其他的就是基本dp操作啦
********************************
#include<iostream>
#include<vector>
#include<algorithm>
#include<queue>
#include<cstring>
#include<cstdio>
using namespace std;
int read()
{
int f=1,x=0;
char ss=getchar();
while(ss<'0'||ss>'9'){if(ss=='-')f=-1;ss=getchar();}
while(ss>='0'&&ss<='9'){x=x*10+ss-'0';ss=getchar();}
return f*x;
}
const int mod=1e8;
int m,n;
int f[110];
int dp[50][10010];
int ans;
bool check(int x)
{
if( (( x&(x<<1) )==0) && (( x&(x>>1) )==0) ) return true;
else return false;
}
int main()
{
m=read();n=read();
for(int i=1;i<=m;i++)
for(int j=1;j<=n;j++)
{
int k=read();
f[i]=(f[i]<<1)+(k^1);
}//处理草地情况
for(int i=0;i<=(1<<n)-1;i++)
if( check(i) && (i&f[1])==0 ) dp[1][i]=1;
//预处理第一行草地情况
for(int i=2;i<=m;i++)//从第二行开始枚举每一行
{
for(int j=0;j<=(1<<n)-1;j++)//枚举第i行的状态
{
if( check(j) && (j&f[i])==0 )//判断状态是否合法
for(int k=0;k<=(1<<n)-1;k++)//枚举第i-1行的状态
if((j&k)==0) dp[i][j]+=dp[i-1][k]%mod,dp[i][j]%=mod;
//若合法则更新dp数组
}
}
for(int i=0;i<=(1<<n)-1;i++)
ans+=dp[m][i]%mod,ans%=mod;
cout<<ans;
return 0;
}
洛谷P1879 [USACO06NOV]玉米田Corn Fields【状压DP】题解+AC代码的更多相关文章
- P1879 [USACO06NOV]玉米田Corn Fields (状压dp入门)
题目链接: https://www.luogu.org/problemnew/show/P1879 具体思路: 我们可以先把所有合法的情况枚举出来,然后对第一行判断有多少种情况满足,然后对于剩下的行数 ...
- P1879 [USACO06NOV]玉米田Corn Fields 状压dp/插头dp
正解:状压dp/插头dp 解题报告: 链接! ……我真的太菜了……我以为一个小时前要搞完的题目调错误调了一个小时……90分到100我差不多搞了一个小时…… 然后这题还是做过的……就很气,觉得确实是要搞 ...
- 洛谷P1879 [USACO06NOV]玉米田Corn Fields(状压dp)
洛谷P1879 [USACO06NOV]玉米田Corn Fields \(f[i][j]\) 表示前 \(i\) 行且第 \(i\) 行状态为 \(j\) 的方案总数.\(j\) 的大小为 \(0 \ ...
- C++ 洛谷 P1879 [USACO06NOV]玉米田Corn Fields
没学状压DP的看一下 合法布阵问题 P1879 [USACO06NOV]玉米田Corn Fields 题意:给出一个n行m列的草地(n,m<=12),1表示肥沃,0表示贫瘠,现在要把一些牛放在 ...
- 洛谷 P1879 [USACO06NOV]玉米田Corn Fields 题解
P1879 [USACO06NOV]玉米田Corn Fields 题目描述 Farmer John has purchased a lush new rectangular pasture compo ...
- 洛谷P1879 [USACO06NOV]玉米田Corn Fields (状态压缩DP)
题目描述 Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ...
- 洛谷 P1879 [USACO06NOV]玉米田Corn Fields
题目描述 Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ...
- [洛谷P1879][USACO06NOV]玉米田Corn Fields
题目大意:有一个$n\times m$的矩阵,$(1 \leq m \leq 12; 1 \leq n \leq 12)$,想在其中的一些格子中种草,一些格子不能种草,且两块草地不相邻.问有多少种种植 ...
- [USACO06NOV]玉米田Corn Fields 状压DP
题面: 农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ 12; 1 ≤ N ≤ 12),每一格都是一块正方形的土地.John打算在牧场上的某几格里种上美味的草,供他的 ...
随机推荐
- dedecms利用memberlist标签调用自定义会员模型的会员信息
[摘要]本文讲一下dedecms如何利用memberlist标签调用自定义会员模型的会员信息. dedecms利用memberlist标签调用自定义会员模型的会员信息,这个问题找了很久,官方论坛提问过 ...
- 调用QQ聊天功能
[HTML]: <a href="javascript:void(0);" onclick="chatQQ()">咨询客服</a> fu ...
- DALI调色温
DALI调色温模块使用手册 公 司: 深圳市万秀电子有限公司 网 站: http://www.wanxiucx.com 总 机: 0755-23215689 联系人: 张先生 手 机: 139 ...
- Java数据持久层框架 MyBatis之API学习十(Logging详解)
对于MyBatis的学习而言,最好去MyBatis的官方文档:http://www.mybatis.org/mybatis-3/zh/index.html 对于语言的学习而言,马上上手去编程,多多练习 ...
- mysql插入数据后返回自增ID的方法,last_insert_id(),selectkey
mysql插入数据后返回自增ID的方法 mysql和oracle插入的时候有一个很大的区别是,oracle支持序列做id,mysql本身有一个列可以做自增长字段,mysql在插入一条数据后,如何能获得 ...
- Hyperledger Fabric Transaction Flow——事务处理流程
Transaction Flow 本文概述了在标准资产交换过程中发生的事务机制.这个场景包括两个客户,A和B,他们在购买和销售萝卜(产品).他们每个人在网络上都有一个peer,通过这个网络,他们发送自 ...
- banner无缝轮播【小封装】
转载:http://www.qdfuns.com/notes/23446/d1691a1edf5685396813cc85ae6ab10f.html 一直在重复的写banner,写了了好几个,然后每次 ...
- 2017-07-03(VIM ACL权限 )
VIM 底行模式 :w 保存 :q 退出 :! 强制执行 :ls 列出打开的所有文件 :n 进行下一个查询 :15 定位到15行 /xxx 从光标处向下查找xxx出现的位置 ?xxx 从光标处向上查找 ...
- confirm显示数组中的内容时,总是带一个逗号分隔的解决方法
问题的关键 就是在给confirm显示之前,将数组转换成字符串,并以每个数组的元素为一个字符串,加上一个换行回车符即可: 代码中的背景色 为关键的点 <script type="tex ...
- 转-WebService到底是什么?
原文链接:WebService到底是什么? 一.序言 大家或多或少都听过WebService(Web服务),有一段时间很多计算机期刊.书籍和网站都大肆的提及和宣传WebService技术,其中不乏很多 ...