洛谷P1879 [USACO06NOV]玉米田Corn Fields【状压DP】题解+AC代码
题目描述
Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ≤ 12) square parcels. He wants to grow some yummy corn for the cows on a number of squares. Regrettably, some of the squares are infertile and can't be planted. Canny FJ knows that the cows dislike eating close to each other, so when choosing which squares to plant, he avoids choosing squares that are adjacent; no two chosen squares share an edge. He has not yet made the final choice as to which squares to plant.
Being a very open-minded man, Farmer John wants to consider all possible options for how to choose the squares for planting. He is so open-minded that he considers choosing no squares as a valid option! Please help Farmer John determine the number of ways he can choose the squares to plant.
农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ 12; 1 ≤ N ≤ 12),每一格都是一块正方形的土地。John打算在牧场上的某几格里种上美味的草,供他的奶牛们享用。
遗憾的是,有些土地相当贫瘠,不能用来种草。并且,奶牛们喜欢独占一块草地的感觉,于是John不会选择两块相邻的土地,也就是说,没有哪两块草地有公共边。
John想知道,如果不考虑草地的总块数,那么,一共有多少种种植方案可供他选择?(当然,把新牧场完全荒废也是一种方案)
输入格式:
第一行:两个整数M和N,用空格隔开。
第2到第M+1行:每行包含N个用空格隔开的整数,描述了每块土地的状态。第i+1行描述了第i行的土地,所有整数均为0或1,是1的话,表示这块土地足够肥沃,0则表示这块土地不适合种草。
输出格式:
一个整数,即牧场分配总方案数除以100,000,000的余数。
输入样例
2 3
1 1 1
0 1 0
输出样例
9
题目分析
这里我们同样以一个二进制数表示每个状态
1表示种了草,0表示没有
dp[i][j]表示只考虑前i行
第i行状态为j时可行的总方案数
有dp数组定义得出递推式
if(j合法 && k合法 && j,k不冲突)
dp[i][j]+=dp[i-1][k];
则最后ans等于sigma (dp[n][j]) 其中 0 <= j <= (1<< n)-1
关于状态x是否合法的判断
if( (( x&(x<<1) )==0) && (( x&(x>>1) )==0) ) return true;
else return false;
即将x分别左移和右移
若x二进制中某相邻两位皆为1
则左/右移后两位重合,&运算必定返回1,表示不合法
(这里括号比较多,如果不是特别确定位运算优先级,建议将括号都打上,特别注意==比位运算优先级高)
如果实在觉得乱,可以这样写
bool check(int x)
{
if( x & (x<<1) ) return false;
if( x & (x>>1) ) return false;
return true;
}
接下来还要判断状态x是否与土地情况冲突
我们在读入时记录f[i]表示第i行的土地情况
注意我们用1表示不能种,0表示能种
这样我们判断状态x是否合法可以这样
if((j&f[i])==0 )return true;
else return false;
因为我们只关心不能种草的位是否合法
所以这么做能种草的地方一定返回0
而如果状态x在不能种草的地方种了草(该位为1)
则位运算必定返回1
其他的就是基本dp操作啦
********************************
#include<iostream>
#include<vector>
#include<algorithm>
#include<queue>
#include<cstring>
#include<cstdio>
using namespace std;
int read()
{
int f=1,x=0;
char ss=getchar();
while(ss<'0'||ss>'9'){if(ss=='-')f=-1;ss=getchar();}
while(ss>='0'&&ss<='9'){x=x*10+ss-'0';ss=getchar();}
return f*x;
}
const int mod=1e8;
int m,n;
int f[110];
int dp[50][10010];
int ans;
bool check(int x)
{
if( (( x&(x<<1) )==0) && (( x&(x>>1) )==0) ) return true;
else return false;
}
int main()
{
m=read();n=read();
for(int i=1;i<=m;i++)
for(int j=1;j<=n;j++)
{
int k=read();
f[i]=(f[i]<<1)+(k^1);
}//处理草地情况
for(int i=0;i<=(1<<n)-1;i++)
if( check(i) && (i&f[1])==0 ) dp[1][i]=1;
//预处理第一行草地情况
for(int i=2;i<=m;i++)//从第二行开始枚举每一行
{
for(int j=0;j<=(1<<n)-1;j++)//枚举第i行的状态
{
if( check(j) && (j&f[i])==0 )//判断状态是否合法
for(int k=0;k<=(1<<n)-1;k++)//枚举第i-1行的状态
if((j&k)==0) dp[i][j]+=dp[i-1][k]%mod,dp[i][j]%=mod;
//若合法则更新dp数组
}
}
for(int i=0;i<=(1<<n)-1;i++)
ans+=dp[m][i]%mod,ans%=mod;
cout<<ans;
return 0;
}
洛谷P1879 [USACO06NOV]玉米田Corn Fields【状压DP】题解+AC代码的更多相关文章
- P1879 [USACO06NOV]玉米田Corn Fields (状压dp入门)
题目链接: https://www.luogu.org/problemnew/show/P1879 具体思路: 我们可以先把所有合法的情况枚举出来,然后对第一行判断有多少种情况满足,然后对于剩下的行数 ...
- P1879 [USACO06NOV]玉米田Corn Fields 状压dp/插头dp
正解:状压dp/插头dp 解题报告: 链接! ……我真的太菜了……我以为一个小时前要搞完的题目调错误调了一个小时……90分到100我差不多搞了一个小时…… 然后这题还是做过的……就很气,觉得确实是要搞 ...
- 洛谷P1879 [USACO06NOV]玉米田Corn Fields(状压dp)
洛谷P1879 [USACO06NOV]玉米田Corn Fields \(f[i][j]\) 表示前 \(i\) 行且第 \(i\) 行状态为 \(j\) 的方案总数.\(j\) 的大小为 \(0 \ ...
- C++ 洛谷 P1879 [USACO06NOV]玉米田Corn Fields
没学状压DP的看一下 合法布阵问题 P1879 [USACO06NOV]玉米田Corn Fields 题意:给出一个n行m列的草地(n,m<=12),1表示肥沃,0表示贫瘠,现在要把一些牛放在 ...
- 洛谷 P1879 [USACO06NOV]玉米田Corn Fields 题解
P1879 [USACO06NOV]玉米田Corn Fields 题目描述 Farmer John has purchased a lush new rectangular pasture compo ...
- 洛谷P1879 [USACO06NOV]玉米田Corn Fields (状态压缩DP)
题目描述 Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ...
- 洛谷 P1879 [USACO06NOV]玉米田Corn Fields
题目描述 Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ...
- [洛谷P1879][USACO06NOV]玉米田Corn Fields
题目大意:有一个$n\times m$的矩阵,$(1 \leq m \leq 12; 1 \leq n \leq 12)$,想在其中的一些格子中种草,一些格子不能种草,且两块草地不相邻.问有多少种种植 ...
- [USACO06NOV]玉米田Corn Fields 状压DP
题面: 农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ 12; 1 ≤ N ≤ 12),每一格都是一块正方形的土地.John打算在牧场上的某几格里种上美味的草,供他的 ...
随机推荐
- parse_str() 函数把查询字符串解析到变量中。
定义和用法 parse_str() 函数把查询字符串解析到变量中. 注释:如果未设置 array 参数,则由该函数设置的变量将覆盖已存在的同名变量. 注释:php.ini 文件中的 magic_quo ...
- python基础8之自定义模块、if __name__==__main__:解释
一.自定义模块与使用 python模块说明:类似于函数式编程和面向过程编程,函数式编程则完成一个功能,其他代码用来调用即可,提供了代码的重用性和代码间的耦合.而对于一个复杂的功能来,可能需要多个函数才 ...
- 理解rem实现响应式布局原理及js动态计算rem
前言 移动端布局中,童鞋们会使用到rem作为css单位进行不同手机屏幕大小上的适配.那么来讲讲rem在其中起的作用和如何动态设置rem的值. 1.什么是rem rem是相对于根元素(html标签)的字 ...
- WEB前端大神之路之基础篇
CSS篇: 1.CSS权重: 不重复造轮子啦,直接传送门(CSS选择器的权重与优先规则) JavaScript篇: 1.this关键字: 它是一种引用(referent).指向的是当前上下文(cont ...
- Intellij 设置生成serialVersionUID的方法
- python_如何通过实例方法名字调用方法?
案例: 某项目中,我们的代码使用的2个不同库中的图形类: Circle,Triangle 这两个类中都有一个获取面积的方法接口,但是接口的名字不一样 需求: 统一这些接口,不关心具体的接口,只要我调用 ...
- Linux指令--traceroute,netstat,ss
通过traceroute我们可以知道信息从你的计算机到互联网另一端的主机是走的什么路径.当然每次数据包由某一同样的出发点(source)到达某一同样的目的地(destination)走的路径可能会不一 ...
- SSE图像算法优化系列十五:YUV/XYZ和RGB空间相互转化的极速实现(此后老板不用再担心算法转到其他空间通道的耗时了)。
在颜色空间系列1: RGB和CIEXYZ颜色空间的转换及相关优化和颜色空间系列3: RGB和YUV颜色空间的转换及优化算法两篇文章中我们给出了两种不同的颜色空间的相互转换之间的快速算法的实现代码,但是 ...
- 3.移植驱动到3.4内核-移植DM9000C驱动
在上章-使内核支持烧写yaffs2,裁剪内核并制作补丁了 本章,便开始移植以前2.6内核的驱动到3.4新内核 1.介绍 首先内核更新,有可能会重新定义新的宏,去除以前的宏,以前更改函数名等 所以移植驱 ...
- rabbitMQ的安装和配置(一)
erlang是一门面向并发的编程语言,流行的消息队列rabbitMQ是基于erlang环境运行的: 系统环境 操作系统:oracle-linux7.3 erlang版本:otp_src_20.0 下载 ...