Imagine that you are in a building that has exactly n floors. You can move between the floors in a lift. Let's number the floors from bottom
to top with integers from 1 to n.
Now you're on the floor number a. You are very bored, so you want to take the lift. Floor number b has
a secret lab, the entry is forbidden. However, you already are in the mood and decide to make k consecutive trips in the lift.

Let us suppose that at the moment you are on the floor number x (initially, you were on floor a).
For another trip between floors you choose some floor with number y (y ≠ x)
and the lift travels to this floor. As you cannot visit floor b with the secret lab, you decided that the distance from the current floor x to
the chosen y must be strictly less than the distance from the current floor x to
floor b with the secret lab. Formally, it means that the following inequation must fulfill: |x - y| < |x - b|.
After the lift successfully transports you to floor y, you write down number y in
your notepad.

Your task is to find the number of distinct number sequences that you could have written in the notebook as the result of k trips in the lift.
As the sought number of trips can be rather large, find the remainder after dividing the number by 1000000007 (109 + 7).

Input

The first line of the input contains four space-separated integers nabk (2 ≤ n ≤ 5000, 1 ≤ k ≤ 5000, 1 ≤ a, b ≤ na ≠ b).

Output

Print a single integer — the remainder after dividing the sought number of sequences by 1000000007 (109 + 7).

Sample test(s)
input
5 2 4 1
output
2
input
5 2 4 2
output
2
input
5 3 4 1
output
0

题意:做电梯。刚開始的时候你在a层,不能到b层,每次你到新的地方的y,必须满足|x-y|<|x-b|,求坐k次有多少种可能

思路:比較easy想到的是dp[i][j]表示第i次到了j层的可能。分情况讨论。比如:当a<b的时候。下一次的层数i是不能超过j+(b-j-1)/2的,然后每次预先处理出前j层的可能。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int mod = 1000000007;
const int maxn = 5005; int n, a, b, k, dp[maxn][maxn];
int sum[maxn]; int main() {
scanf("%d%d%d%d", &n, &a, &b, &k);
memset(dp, 0, sizeof(dp));
if (a < b) {
dp[0][a] = 1;
for (int j = 1; j < b; j++)
sum[j] = sum[j-1] + dp[0][j];
for (int i = 1; i <= k; i++) {
for (int j = 1; j < b; j++)
dp[i][j] = (sum[(b-j-1)/2+j] - dp[i-1][j] + mod) % mod;
sum[0] = 0;
for (int j = 1; j < b; j++)
sum[j] = (sum[j-1] + dp[i][j]) % mod;
}
printf("%d\n", sum[b-1]);
}
else {
dp[0][a] = 1;
for (int j = n; j >= b+1; j--)
sum[j] = sum[j+1] + dp[0][j];
for (int i = 1; i <= k; i++) {
for (int j = b+1; j <= n; j++)
dp[i][j] = (sum[j-(j-b-1)/2] - dp[i-1][j] + mod) % mod;
sum[0] = 0;
for (int j = n; j >= b+1; j--)
sum[j] = (sum[j+1] + dp[i][j]) % mod;
}
printf("%d\n", sum[b+1]);
}
return 0;
}

Codeforces Round #274 (Div. 2) E. Riding in a Lift(DP)的更多相关文章

  1. Codeforces Round #274 (Div. 1) C. Riding in a Lift 前缀和优化dp

    C. Riding in a Lift Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/480/pr ...

  2. Codeforces Round #274 Div.1 C Riding in a Lift --DP

    题意:给定n个楼层,初始在a层,b层不可停留,每次选一个楼层x,当|x-now| < |x-b| 且 x != now 时可达(now表示当前位置),此时记录下x到序列中,走k步,最后问有多少种 ...

  3. Codeforces Round #529 (Div. 3) E. Almost Regular Bracket Sequence (思维)

    Codeforces Round #529 (Div. 3) 题目传送门 题意: 给你由左右括号组成的字符串,问你有多少处括号翻转过来是合法的序列 思路: 这么考虑: 如果是左括号 1)整个序列左括号 ...

  4. Codeforces Round #356 (Div. 2) C. Bear and Prime 100(转)

    C. Bear and Prime 100 time limit per test 1 second memory limit per test 256 megabytes input standar ...

  5. Codeforces Round #228 (Div. 2) C. Fox and Box Accumulation(贪心)

    题目:http://codeforces.com/contest/389/problem/C 题意:给n个箱子,给n个箱子所能承受的重量,每个箱子的重量为1: 很简单的贪心,比赛的时候没想出来.... ...

  6. Codeforces Round #290 (Div. 2) B. Fox And Two Dots(DFS)

    http://codeforces.com/problemset/problem/510/B #include "cstdio" #include "cstring&qu ...

  7. Codeforces Round #603 (Div. 2) C. Everyone is a Winner! (数学)

    链接: https://codeforces.com/contest/1263/problem/C 题意: On the well-known testing system MathForces, a ...

  8. Codeforces Round #533 (Div. 2) D. Kilani and the Game(BFS)

    题目链接:https://codeforces.com/contest/1105/problem/D 题意:p 个人在 n * m 的地图上扩展自己的城堡范围,每次最多走 a_i 步(曼哈顿距离),按 ...

  9. Codeforces Round #509 (Div. 2) F. Ray in the tube(思维)

    题目链接:http://codeforces.com/contest/1041/problem/F 题意:给出一根无限长的管子,在二维坐标上表示为y1 <= y <= y2,其中 y1 上 ...

随机推荐

  1. 图解JavaScript知识点

  2. linux下软件安装与卸载

    linux上软件二进制安装主要分为:rpm手动安装和yum在线安装(其所安装的都为rpm二进制包). 关于rpm手动安装,学习后面内容前需分清如下内容: 包全名 : 操作的包是没有安装的软件包时,使用 ...

  3. ORACLE复制数据库【weber出品】

    一.概述 在公司中,我们会经常面临着一种情况.我们制定了对数据库的操作方案后,还不可以在真正的数据库上执行,需要在备用数据库进行测试,这个时候就需要备用数据上的数据和真正数据库的数据是一模一样的.我们 ...

  4. Swift - 34 - 闭包的基础语法

    //: Playground - noun: a place where people can play import UIKit // 初始化一个整数数组 var arr = [1, 3, 5, 7 ...

  5. apache2.2 虚拟主机配置详解

    一.修改httpd.conf 打开appserv的安装目录,找到httpd.conf文件,分别去掉下面两行文字前面的#号. #LoadModule vhost_alias_module modules ...

  6. 正则-匹配获取url参数

    1.根据指定参数名获取参数值 A页面向连接到B页面的url为: http://www.189dg.com/ajax/sms_query.ashx?action=smsdetail&sid=22 ...

  7. php 学习路线 赵兴壮2014年4月28 日 加油

    第一阶段 第一讲,WEB基础     1.1 网站基本知识: 1.2 网络协议介绍: 1.3 B/S与C/S结构的区别: 1.4 WEB编程.网站开发技术介绍.      第二讲,网页设计     2 ...

  8. Web之CSS开发技巧: CSS @media

    CSS @media 规则非常适合于将 HTML 或 XML 文档定位为目标输出方法.目前,print 媒体的使用非常普遍,与实现单独的 “可打印版本” 相比,print 提供了更加整洁的方式来创建打 ...

  9. linux下实现ls()函数遍历目录

    转载请注明原创:http://www.cnblogs.com/StartoverX/p/4600794.html 需求:在linux下遍历目录,输出目录中各文件名. 在linux下遍历目录的相关函数有 ...

  10. 解决VS2013中“This function or variable may be unsafe”的问题

    1.在VS2013中编译代码时出现如上错误信息,下面就介绍下如何解决This function or variable may be unsafe的问题. 2.用VS2013打开出现错误的代码文件 3 ...