Dancing Stars on Me

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Total Submission(s): 592    Accepted Submission(s): 315

Problem Description
The sky was brushed clean by the wind and the stars were cold in a black sky. What a wonderful night. You observed that, sometimes the stars can form a regular polygon in the sky if we connect them properly. You want to record these moments by your smart camera. Of course, you cannot stay awake all night for capturing. So you decide to write a program running on the smart camera to check whether the stars can form a regular polygon and capture these moments automatically.
Formally, a regular polygon is a convex polygon whose angles are all equal and all its sides have the same length. The area of a regular polygon must be nonzero. We say the stars can form a regular polygon if they are exactly the vertices of some regular polygon. To simplify the problem, we project the sky to a two-dimensional plane here, and you just need to check whether the stars can form a regular polygon in this plane.
 
Input
The first line contains a integer T indicating the total number of test cases. Each test case begins with an integer n, denoting the number of stars in the sky. Following n lines, each contains 2 integers xi,yi, describe the coordinates of n stars.
1≤T≤300 3≤n≤100 −10000≤xi,yi≤10000 All coordinates are distinct.
 
Output
For each test case, please output "`YES`" if the stars can form a regular polygon. Otherwise, output "`NO`" (both without quotes).
 
Sample Input
3
3
0 0
1 1
1 0
4
0 0
0 1
1 0
1 1
5
0 0
0 1
0 2
2 2
2 0
 
Sample Output
NO
YES
NO
 

题意:给你一个多边形,问你这个多边形是否是正多边形。。。

题解:无奈啊,我刚开始就判断边是否相等,用差集排序,相邻判断,果断wa,又想着没考虑角度,就想着对相邻两个边求差集,是否相等,各种wa,无耐加心碎啊,然后就暴力了了。。。就判断个相等边都要大于等于2,然后就对了。。。fuck。。。

代码:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
#include<map>
#include<algorithm>
using namespace std;
#define mem(x,y) memset(x,y,sizeof(x))
#define SI(x) scanf("%d",&x)
#define SL(x) scanf("%lld",&x)
#define PI(x) printf("%d",x)
#define PL(x) printf("%lld",x)
#define P_ printf(" ")
#define T_T while(T--)
typedef long long LL;
const int INF=0x3f3f3f3f;
const int MAXN=210;
int N;
struct Node{
LL x,y;
/*Node(LL x=0,LL y=0):x(x),y(y){}*/
};
Node dt[MAXN];
/*LL cross(Node a,Node b){
return a.x*b.y-a.y*b.x;
} int cmp(Node a,Node b){
if(cross(a,b)>=0)return 1;
else return 0;
}*/
/*
Node operator - (Node a,Node b){
return Node(a.x-b.x,a.y-b.y);
}*/
double getl(Node a,Node b){
LL x=a.x-b.x,y=a.y-b.y;
return sqrt(1.0*x*x+1.0*y*y);
}
bool judge(){
//double temp=getl(dt[0],dt[N-1]);
double ans;
for(int i=0;i<N;i++){
// if(temp!=getl(dt[i],dt[i-1]))return false;
double temp=INF;
int cnt=0;
for(int j=0;j<N;j++){
if(i==j)continue;
if(getl(dt[i],dt[j])<temp)temp=getl(dt[i],dt[j]);
if(i&&ans==temp)cnt++;
}
if(!i)ans=temp;
//printf("%lf %d\n",ans,cnt);
if(i)if(temp!=ans||cnt<2)return false;
} /*double x=cross(dt[0]-dt[N-1],dt[0]-dt[1]);
for(int i=1;i<N-1;i++){
int y;
if(x!=(y=cross(dt[i]-dt[i-1],dt[i]-dt[i+1]))){
return false;
}
}
if(x!=cross(dt[N-1]-dt[N-2],dt[N-1]-dt[0]))return false;*/
return true;
}
int main(){
int T;
SI(T);
T_T{
SI(N);
for(int i=0;i<N;i++)SL(dt[i].x),SL(dt[i].y);
//sort(dt,dt+N,cmp);
//for(int i=1;i<N;i++)printf("%d\n",cross(dt[i],dt[i-1]));
if(judge())puts("YES");
else puts("NO");
}
return 0;
}

  

Dancing Stars on Me(判断正多边形)的更多相关文章

  1. 2015ACM/ICPC亚洲区长春站 G hdu 5533 Dancing Stars on Me

    Dancing Stars on Me Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Ot ...

  2. hdu 5533 Dancing Stars on Me 水题

    Dancing Stars on Me Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.p ...

  3. hdu 5533 Dancing Stars on Me

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5533 Dancing Stars on Me Time Limit: 2000/1000 MS (Ja ...

  4. Dancing Stars on Me

    Dancing Stars on Me Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Ot ...

  5. HDU 5533/ 2015长春区域 G.Dancing Stars on Me 暴力

    Dancing Stars on Me Problem Description The sky was brushed clean by the wind and the stars were col ...

  6. Dancing Stars on Me---hdu5533(判断是否为正多边形)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5533 题意:平面图中 有n个点给你每个点的坐标,判断是否能通过某种连线使得这些点所组成的n边形为 正n ...

  7. hdu 5533 Dancing Stars on Me(数学,水)

    Problem Description The sky was brushed clean by the wind and the stars were cold in a black sky. Wh ...

  8. 【2015 ICPC亚洲区域赛长春站 G】Dancing Stars on Me(几何+暴力)

    Problem Description The sky was brushed clean by the wind and the stars were cold in a black sky. Wh ...

  9. HDU 5533 Dancing Stars on Me( 有趣的计算几何 )

    链接:传送门 题意:给出 n 个点,判断能不能构成一个正 n 边形,这 n 个点坐标是整数 思路:这道题关键就在与这 n 个点坐标是正整数!!!可以简单的分析,如果 n != 4,那一定就不能构成正 ...

随机推荐

  1. 安装爬虫scrapy

    使用easy_install安装scrapy,报错 error: Setup script exited with error: command 'gcc' failed with exit stat ...

  2. 老旧Webkit浏览器行内元素0间距问题

    有时我们希望display:inline-block的元素之间的天衣无缝.紧密相依,比如说如下的情情形: 一般情况下我们使用如下代码可以实现: .pageNav { font-size:; text- ...

  3. 推荐一款手机端的图片滑动插件iSlider

    首先先放出中文官方地址   http://be-fe.github.io/iSlider/index.html 这是demo 众所周知,移动端的图片滑动插件有很多,为什么我要推荐这个iSlider呢? ...

  4. 简谈python反射

    写出一个简单类:import sysclass webserver(object): def __init__(self,host,post): self.host = host self.post ...

  5. junit的安装和使用

    一.junit的安装: junit-4.11.jar: http://www.java2s.com/Code/Jar/j/Downloadjunit411jar.htm hamcrest-core.j ...

  6. Linux搭建FTP

    Linux FTP 服务器配置简单说明 转载:http://blog.csdn.net/tianlesoftware/article/details/6151317

  7. Android SharedPreference最佳实践

    Android提供多种方式保存应用数据,其中一种方式是SharedPreferences,使用键值对保存私有基本的数据.所有的逻辑仅基于以下三个类: SharedPreferences SharedP ...

  8. Android网络框架技术

    网络相关1. Asynchronous Http Client for Android Android异步Http请求项目地址:https://github.com/loopj/android-asy ...

  9. 查GDI对象泄露的利器:GDIView

    查GDI对象泄露的利器:GDIView可以很详细的查到进程的GDI对象的总个数,详细的GDI对象的个数,以及其增减数量.其GDI对象类型也可以很详细的得知,以及其内存地址,句柄.实在是好使! 下载地址 ...

  10. HDU 3362 Fix

    题目大意:题目给出n(n <= 18)个点的二维坐标,并说明某些点是被固定了的,其余则没固定,要求添加一些边,使得还没被固定的点变成固定的,当一个没固定的点和两个固定了的点连接后,该点就被间接固 ...