Dancing Stars on Me(判断正多边形)
Dancing Stars on Me
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others) Total Submission(s): 592 Accepted Submission(s): 315
Formally, a regular polygon is a convex polygon whose angles are all equal and all its sides have the same length. The area of a regular polygon must be nonzero. We say the stars can form a regular polygon if they are exactly the vertices of some regular polygon. To simplify the problem, we project the sky to a two-dimensional plane here, and you just need to check whether the stars can form a regular polygon in this plane.
1≤T≤300 3≤n≤100 −10000≤xi,yi≤10000 All coordinates are distinct.
3
0 0
1 1
1 0
4
0 0
0 1
1 0
1 1
5
0 0
0 1
0 2
2 2
2 0
YES
NO
题意:给你一个多边形,问你这个多边形是否是正多边形。。。
题解:无奈啊,我刚开始就判断边是否相等,用差集排序,相邻判断,果断wa,又想着没考虑角度,就想着对相邻两个边求差集,是否相等,各种wa,无耐加心碎啊,然后就暴力了了。。。就判断个相等边都要大于等于2,然后就对了。。。fuck。。。
代码:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
#include<map>
#include<algorithm>
using namespace std;
#define mem(x,y) memset(x,y,sizeof(x))
#define SI(x) scanf("%d",&x)
#define SL(x) scanf("%lld",&x)
#define PI(x) printf("%d",x)
#define PL(x) printf("%lld",x)
#define P_ printf(" ")
#define T_T while(T--)
typedef long long LL;
const int INF=0x3f3f3f3f;
const int MAXN=210;
int N;
struct Node{
LL x,y;
/*Node(LL x=0,LL y=0):x(x),y(y){}*/
};
Node dt[MAXN];
/*LL cross(Node a,Node b){
return a.x*b.y-a.y*b.x;
} int cmp(Node a,Node b){
if(cross(a,b)>=0)return 1;
else return 0;
}*/
/*
Node operator - (Node a,Node b){
return Node(a.x-b.x,a.y-b.y);
}*/
double getl(Node a,Node b){
LL x=a.x-b.x,y=a.y-b.y;
return sqrt(1.0*x*x+1.0*y*y);
}
bool judge(){
//double temp=getl(dt[0],dt[N-1]);
double ans;
for(int i=0;i<N;i++){
// if(temp!=getl(dt[i],dt[i-1]))return false;
double temp=INF;
int cnt=0;
for(int j=0;j<N;j++){
if(i==j)continue;
if(getl(dt[i],dt[j])<temp)temp=getl(dt[i],dt[j]);
if(i&&ans==temp)cnt++;
}
if(!i)ans=temp;
//printf("%lf %d\n",ans,cnt);
if(i)if(temp!=ans||cnt<2)return false;
} /*double x=cross(dt[0]-dt[N-1],dt[0]-dt[1]);
for(int i=1;i<N-1;i++){
int y;
if(x!=(y=cross(dt[i]-dt[i-1],dt[i]-dt[i+1]))){
return false;
}
}
if(x!=cross(dt[N-1]-dt[N-2],dt[N-1]-dt[0]))return false;*/
return true;
}
int main(){
int T;
SI(T);
T_T{
SI(N);
for(int i=0;i<N;i++)SL(dt[i].x),SL(dt[i].y);
//sort(dt,dt+N,cmp);
//for(int i=1;i<N;i++)printf("%d\n",cross(dt[i],dt[i-1]));
if(judge())puts("YES");
else puts("NO");
}
return 0;
}
Dancing Stars on Me(判断正多边形)的更多相关文章
- 2015ACM/ICPC亚洲区长春站 G hdu 5533 Dancing Stars on Me
Dancing Stars on Me Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Ot ...
- hdu 5533 Dancing Stars on Me 水题
Dancing Stars on Me Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.p ...
- hdu 5533 Dancing Stars on Me
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5533 Dancing Stars on Me Time Limit: 2000/1000 MS (Ja ...
- Dancing Stars on Me
Dancing Stars on Me Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Ot ...
- HDU 5533/ 2015长春区域 G.Dancing Stars on Me 暴力
Dancing Stars on Me Problem Description The sky was brushed clean by the wind and the stars were col ...
- Dancing Stars on Me---hdu5533(判断是否为正多边形)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5533 题意:平面图中 有n个点给你每个点的坐标,判断是否能通过某种连线使得这些点所组成的n边形为 正n ...
- hdu 5533 Dancing Stars on Me(数学,水)
Problem Description The sky was brushed clean by the wind and the stars were cold in a black sky. Wh ...
- 【2015 ICPC亚洲区域赛长春站 G】Dancing Stars on Me(几何+暴力)
Problem Description The sky was brushed clean by the wind and the stars were cold in a black sky. Wh ...
- HDU 5533 Dancing Stars on Me( 有趣的计算几何 )
链接:传送门 题意:给出 n 个点,判断能不能构成一个正 n 边形,这 n 个点坐标是整数 思路:这道题关键就在与这 n 个点坐标是正整数!!!可以简单的分析,如果 n != 4,那一定就不能构成正 ...
随机推荐
- 安装爬虫scrapy
使用easy_install安装scrapy,报错 error: Setup script exited with error: command 'gcc' failed with exit stat ...
- 老旧Webkit浏览器行内元素0间距问题
有时我们希望display:inline-block的元素之间的天衣无缝.紧密相依,比如说如下的情情形: 一般情况下我们使用如下代码可以实现: .pageNav { font-size:; text- ...
- 推荐一款手机端的图片滑动插件iSlider
首先先放出中文官方地址 http://be-fe.github.io/iSlider/index.html 这是demo 众所周知,移动端的图片滑动插件有很多,为什么我要推荐这个iSlider呢? ...
- 简谈python反射
写出一个简单类:import sysclass webserver(object): def __init__(self,host,post): self.host = host self.post ...
- junit的安装和使用
一.junit的安装: junit-4.11.jar: http://www.java2s.com/Code/Jar/j/Downloadjunit411jar.htm hamcrest-core.j ...
- Linux搭建FTP
Linux FTP 服务器配置简单说明 转载:http://blog.csdn.net/tianlesoftware/article/details/6151317
- Android SharedPreference最佳实践
Android提供多种方式保存应用数据,其中一种方式是SharedPreferences,使用键值对保存私有基本的数据.所有的逻辑仅基于以下三个类: SharedPreferences SharedP ...
- Android网络框架技术
网络相关1. Asynchronous Http Client for Android Android异步Http请求项目地址:https://github.com/loopj/android-asy ...
- 查GDI对象泄露的利器:GDIView
查GDI对象泄露的利器:GDIView可以很详细的查到进程的GDI对象的总个数,详细的GDI对象的个数,以及其增减数量.其GDI对象类型也可以很详细的得知,以及其内存地址,句柄.实在是好使! 下载地址 ...
- HDU 3362 Fix
题目大意:题目给出n(n <= 18)个点的二维坐标,并说明某些点是被固定了的,其余则没固定,要求添加一些边,使得还没被固定的点变成固定的,当一个没固定的点和两个固定了的点连接后,该点就被间接固 ...