1058 - Parallelogram Counting
Time Limit: 2 second(s) Memory Limit: 32 MB

There are n distinct points in the plane, given by their integer coordinates. Find the number of parallelograms whose vertices lie on these points. In other words, find the number of 4-element subsets of these points that can be written as {A, B, C, D} such that AB || CD, and BC || AD. No four points are in a straight line.

Input

Input starts with an integer T (≤ 15), denoting the number of test cases.

The first line of each test case contains an integer n (1 ≤ n ≤ 1000). Each of the next n lines, contains 2 space-separated integersx and y (the coordinates of a point) with magnitude (absolute value) of no more than 1000000000.

Output

For each case, print the case number and the number of parallelograms that can be formed.

Sample Input

Output for Sample Input

2

6

0 0

2 0

4 0

1 1

3 1

5 1

7

-2 -1

8 9

5 7

1 1

4 8

2 0

9 8

Case 1: 5

Case 2: 6

题解:

给一系列点,让找到可以组成的平行四边形的个数;

思路:由于平行四边形的交点是唯一的,那么我们只要记录每两个直线的交点,判断交点重复的个数可以求出来了;假设有这个交点有三个重复的,则ans+=3*2/2;

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
typedef long long LL;
const int MAXN=;
struct Dot{
double x,y;
bool operator < (const Dot &b) const{
if(x!=b.x)return x<b.x;
else return y<b.y;
}
};
Dot dt[MAXN];
Dot num[MAXN*MAXN];
int main(){
int T,N,kase=;
scanf("%d",&T);
while(T--){
scanf("%d",&N);
for(int i=;i<N;i++)scanf("%lf%lf",&dt[i].x,&dt[i].y);
int tp=;
for(int i=;i<N;i++)
for(int j=i+;j<N;j++){
if(dt[i].x==dt[j].x&&dt[i].y==dt[j].y)continue;
num[tp].y=(dt[i].y+dt[j].y)/;
num[tp].x=(dt[i].x+dt[j].x)/;
tp++;
}
sort(num,num+tp);
LL ans=,cur=;
for(int i=;i<tp;i++){
if(num[i].x==num[i-].x&&num[i].y==num[i-].y)cur++;
else{
ans+=cur*(cur-)/;cur=;
}
}
printf("Case %d: %lld\n",++kase,ans);
}
return ;
}

Parallelogram Counting(平行四边形个数,思维转化)的更多相关文章

  1. 计算几何 + 统计 --- Parallelogram Counting

    Parallelogram Counting Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5749   Accepted: ...

  2. 1058 - Parallelogram Counting 计算几何

    1058 - Parallelogram Counting There are n distinct points in the plane, given by their integer coord ...

  3. POJ 1971 Parallelogram Counting (Hash)

          Parallelogram Counting Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 6895   Acc ...

  4. LightOJ 1058 - Parallelogram Counting 几何思维

    http://www.lightoj.com/volume_showproblem.php?problem=1058 题意:给你顶点,问能够成多少个平行四边形. 思路:开始想使用长度来扫描有多少根,但 ...

  5. Light OJ - 1058 Parallelogram Counting(判定平行四边形)

    Description There are n distinct points in the plane, given by their integer coordinates. Find the n ...

  6. POJ 1791 Parallelogram Counting(求平行四边形数量)

    Description There are n distinct points in the plane, given by their integer coordinates. Find the n ...

  7. 简单题思维转化BestCoder

    题意:给你a, b, c, d四个数,这几个数的范围都是大于0小于1000的整数,让比较 a ^b 和 c ^ d的大小. 这道题看着特别简单,但是当时就是做不出来,将近一个月没有做题了,手生了,不过 ...

  8. Codeforces 911D. Inversion Counting (数学、思维)

    题目链接:Inversion Counting 题意: 定义数列{ai|i=1,2,...,n}的逆序对如下:对于所有的1≤j<i≤n,若ai<aj,则<i,j>为一个逆序对. ...

  9. Number of Parallelograms(求平行四边形个数)

    Number of Parallelograms time limit per test 4 seconds memory limit per test 256 megabytes input sta ...

随机推荐

  1. Gas Station 解答

    Problem There are N gas stations along a circular route, where the amount of gas at station i is gas ...

  2. C:\Program Files (x86)\Common Files\microsoft shared\TextTemplating\11.0

    Generating Files with the TextTransform Utility \Program Files\Common Files\Microsoft Shared\TextTem ...

  3. Cocos2d-x 架构一个游戏的一般思路

    采用下面的步骤来实现游戏逻辑: 通过应用程序代理类来初始化第一个CCScene(即AppDelegate里面的第一个CCScene), CCScene里面实例化一个或者多个CCLayer,并把它们当作 ...

  4. PHP MySQL Delete From 之 Delete

    删除数据库中的数据 DELETE FROM 语句用于从数据库表中删除记录. 语法 DELETE FROM table_name WHERE column_name = some_value 注释:SQ ...

  5. More is better(并差集)

    More is better Time Limit : 5000/1000ms (Java/Other)   Memory Limit : 327680/102400K (Java/Other) To ...

  6. Nginx学习之四-Nginx进程同步方式-自旋锁(spinlock)

    自旋锁简介 Nginx框架使用了三种消息传递方式:共享内存.套接字.信号. Nginx主要使用了三种同步方式:原子操作.信号量.文件锁. 基于原子操作,nginx实现了一个自旋锁.自旋锁是一种非睡眠锁 ...

  7. Error:Execution failed for task &#39;:app:dexDebug&#39;. &gt; com.android.ide.common.process.ProcessException

    异常Log: Error:Execution failed for task ':app:dexDebug'. > com.android.ide.common.process.ProcessE ...

  8. 物理机与虚拟机IP互ping通,而互ping主机名不通

    问题描述:虚拟机信息:VMware-workstation 10安装RHEL5.8操作系统.hostname:rhel201.com IP:192.168.1.201 物理机系统:windows 7主 ...

  9. nat网络穿透整理笔记(思维导图)

    mindmanger整理的,关于Nat穿透,图片太小,可以点击放大,单独看图片.

  10. ECSHOP首页站内快讯在哪里添加和修改?

    “添加新闻后在首页站内快讯处显示不出来?”.“请问首页中站内快讯(最新文章)在后台哪个位置管理”.“如何让发布的文章进入首页站内快讯”等等诸如此类的问题,经常在论坛里看到一些朋友在询问. 本ECSHO ...