Google机器学习教程心得(二)决策树与可视化
Visualizing a Decision Tree
Google Machine Learning Recipes 2
官方中文博客 http://chinagdg.org/2016/03/machine-learning-recipes-for-new-developers/
视频地址 http://v.youku.com/v_show/id_XMTUzNDE5Mzg0MA==.html?f=26979872&from=y1.2-3.4.3
Github工程地址 https://github.com/ahangchen/GoogleML
欢迎Star,也欢迎到Issue区讨论
我们从Iris问题,学习决策树可视化,了解决策树工作过程。
Why decision Tree
有很多分类器
- Artificial neural network
- Support Vector Machine
- Lions
- Tigers
- Bears
为啥有这么多动物……
决策树好处
- Easy to read and understand
- 仅有的可解释的几种模型之一(能理解分类器做决策的过程)
决策树就是一系列关于feature的判断作为结点,以label为叶子的一棵树。因此feature越好,结果也越好。
Iris
经典机器学习问题:识别三种Iris
可以在维基看到这个数据集的详细信息,共 50 * 3 = 150 条记录
四个feature:Sepal length, Sepal width, Petal length, Petal width
三个label:setosa, versicolor, virginica。
可以从sklearn中直接导入。
组成
- metadata: feature_names, target_names(这个其实就是label names),描述数据用
- data: 具体feature数据,是一个数组,数组中的每个元素是dataset中的一条数据
- target: 具体label数据,是一个数组
目标
- 导入数据
- 训练分类器
- 预测新的花的label
- 查看决策树
测试数据
- 非训练数据的真实数据,测试分类器的准确度,
- 这里从dataset中抽出第0,第50,第100条作为测试数据
- numpy是一个Python的数据处理库,查看官方Tutorial学习更多
- 测试有很多内容,后面还会有。
环境
可视化使用了pydot,但Pycharm会升级anaconda中的包,导致找不到,我执行了
sudo /home/cwh/anaconda2/bin/conda install -p /home/cwh/anaconda2 pydot -y
重新安装pydot修复pydot找不到的问题;
另外pydot会找不到Graphviz,需要再安装
sudo /home/cwh/anaconda2/bin/conda install -p /home/cwh/anaconda2 Graphviz -y
然后将Graphviz添加到环境变量中,修改/etc/environment为以下内容,重启系统(我的系统是Ubuntu14.04LTS):
PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/home/cwh/android-sdk-linux/ndk-bundle:/home/cwh/android-sdk-linux/platform-tools:/home/cwh/anaconda2/pkgs/graphviz-2.38.0-1/bin"
然后又会有Graphviz中找不到libgvplugin_pango.so.6的问题,根据官网Issue的解答,应该是少了依赖库
ldd /home/cwh/anaconda2/pkgs/graphviz-2.38.0-1/lib/graphviz/libgvplugin_pango.so.6
发现libpng16 not found,于是安装libpng16,在这里下载,然后安装,
./configure
make
sudo make install
sudo ldconfig
再运行代码即可。
代码
Viz:以Iris为例,导入数据,训练分类器,预测,查看决策树
如果觉得我的文章对您有帮助,请随意打赏~

Google机器学习教程心得(二)决策树与可视化的更多相关文章
- Google机器学习教程心得(一)
Hello world Google Machine Learning Recipes 1 官方中文博客 http://chinagdg.org/2016/03/machine-learning-re ...
- Google机器学习教程心得(三) 好的feature
什么造就好的Feature Google Machine Learning Recipes 3 官方中文博客 http://chinagdg.org/2016/03/machine-learning- ...
- 机器学习算法总结(二)——决策树(ID3, C4.5, CART)
决策树是既可以作为分类算法,又可以作为回归算法,而且在经常被用作为集成算法中的基学习器.决策树是一种很古老的算法,也是很好理解的一种算法,构建决策树的过程本质上是一个递归的过程,采用if-then的规 ...
- 【转】机器学习教程 十四-利用tensorflow做手写数字识别
模式识别领域应用机器学习的场景非常多,手写识别就是其中一种,最简单的数字识别是一个多类分类问题,我们借这个多类分类问题来介绍一下google最新开源的tensorflow框架,后面深度学习的内容都会基 ...
- 机器学习之梯度提升决策树GBDT
集成学习总结 简单易学的机器学习算法——梯度提升决策树GBDT GBDT(Gradient Boosting Decision Tree) Boosted Tree:一篇很有见识的文章 https:/ ...
- 机器学习算法实践:决策树 (Decision Tree)(转载)
前言 最近打算系统学习下机器学习的基础算法,避免眼高手低,决定把常用的机器学习基础算法都实现一遍以便加深印象.本文为这系列博客的第一篇,关于决策树(Decision Tree)的算法实现,文中我将对决 ...
- python机器学习实战(二)
python机器学习实战(二) 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7159775.html 前言 这篇noteboo ...
- webpack4 系列教程(十二):处理第三方JavaScript库
教程所示图片使用的是 github 仓库图片,网速过慢的朋友请移步<webpack4 系列教程(十二):处理第三方 JavaScript 库>原文地址.或者来我的小站看更多内容:godbm ...
- 2017.3.31 spring mvc教程(二)核心流程及配置详解
学习的博客:http://elf8848.iteye.com/blog/875830/ 我项目中所用的版本:4.2.0.博客的时间比较早,11年的,学习的是Spring3 MVC.不知道版本上有没有变 ...
随机推荐
- 理解Java的GC日志
分析如下GC日志:[GC [PSYoungGen: 9216K->1024K(9216K)] 1246196K->1246220K(1287040K), 0.2398360 secs] [ ...
- Velocity中避免null引起的数据问题
请先看下面一段代码: #foreach($id in [1..50]) #set($user = $User.Get($id)) $id : ${user.name} #end 上面这段代码中,假设只 ...
- vmware设置centos虚拟机nat联网(转)
今天在vmware虚拟主机中安装hearbeat,为了使用最新的版本,选用编译安装了.在编译过程中,需要连接被墙的网站下载文件,那只能用vpn,但我使用的是桥接方式联网,使用不了真实主机的vpn,于是 ...
- Django学习(三) Django模型创建以及操作
在Django中可以建立自己的模型Model,这里对应Java里的实体类,跟数据库表是对应的.其中用到了django.db模块中的models.如下图所示: mysite/news/models.py ...
- nginx自定义模块编写-根据post参数路由到不同服务器
nginx可以轻松实现根据不同的url 或者 get参数来转发到不同的服务器,然而当我们需要根据http包体来进行请求路由时,nginx默认的配置规则就捉襟见肘了,但是没关系,nginx提供了强大的自 ...
- AndroidTestCase测试用法
1. Java代码TestCase.java 继承AndroidTestCase类 package com.test.casei; import android.test.AndroidTest ...
- STM32F103控制两个步进电机按照一定转速比运动
这个暑假没有回家,在学校准备九月份的电子设计竞赛.今天想给大家分享一下STM32定时器控制两个步进电机按照一定速度比转动的问题. 这次做的05年的电子设计竞赛题目,运动悬挂系统..本实验是控制两个步进 ...
- IVM import vector machine
本文为<Kernel Logistic Regression and the Import Vector Machine>的阅读笔记是技法课的课外阅读 Abstract:基于KLR ker ...
- OpenSuSE zypper repo及Desktop媒体播放器设置 for OpenSuSE12.
1.禁用官方源和DVD光盘源,启用中国大陆源 使用DVD光盘安装好openSUSE 12.2之后,软件安装源中默认存在一个名称为”openSUSE-12.2-1.6″的软件源,这个源的URL实际上是指 ...
- 全国计算机等级考试二级教程-C语言程序设计_第4章_选择结构
switch什么时候用break,什么时候不用break 调用break:一次执行一个分支,输入一个数据,对应一个级别 不调用break:连续执行多个分支 if...else 可以处理任何情况,大于小 ...