1、Lowest Common Ancestor of a Binary Search Tree

Total Accepted: 42225 Total Submissions: 111243 Difficulty: Easy

Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.

According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”

        _______6______
/ \
___2__ ___8__
/ \ / \
0 _4 7 9
/ \
3 5

For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.

/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(root->val >= min(p->val,q->val) && root->val <= max(p->val,q->val)) return root;
if(root->val >=max(p->val,q->val)) return lowestCommonAncestor(root->left,p,q) ;
else return lowestCommonAncestor(root->right,p,q);
}
};

2、Lowest Common Ancestor of a Binary Tree

Total Accepted: 26458 Total Submissions: 95470 Difficulty: Medium

Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.

According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”

        _______3______
/ \
___5__ ___1__
/ \ / \
6 _2 0 8
/ \
7 4

For example, the lowest common ancestor (LCA) of nodes 5 and 1 is 3. Another example is LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.

方法1.

/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { if(root == p || root == q || root == NULL) {
return root;
} TreeNode* left = lowestCommonAncestor(root->left ,p,q);
TreeNode* right = lowestCommonAncestor(root->right,p,q); if(left==NULL && right==NULL){
return NULL;
} if(left!=NULL && right==NULL){
return left;
} if(right!=NULL && left == NULL){
return right;
} return root;
}
};

方法2.

/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
private:
bool getPath(TreeNode* root,TreeNode* node,list<TreeNode*>& list_path){
if(root==NULL){
return false;
} list_path.push_back(root); if(root == node) {
return true;
} bool in_left = getPath(root->left,node,list_path);
if(in_left){
return true;
} bool in_right = getPath(root->right,node,list_path); if(!in_right){
list_path.pop_back();
} return in_right;
}
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
list<TreeNode*> list_path_p,list_path_q; bool list_path_p_exist = getPath(root,p,list_path_p);
bool list_path_q_exist = getPath(root,q,list_path_q); if(!list_path_p_exist && !list_path_q_exist){
return NULL;
} TreeNode* res = NULL;
while(list_path_p.front() == list_path_q.front()){
res = list_path_p.front();
list_path_p.pop_front();
list_path_q.pop_front();
} return res;
}
};

Lowest Common Ancestor of a Binary Search Tree、Lowest Common Ancestor of a Binary Search Tree的更多相关文章

  1. leetcode 108. Convert Sorted Array to Binary Search Tree 、109. Convert Sorted List to Binary Search Tree

    108. Convert Sorted Array to Binary Search Tree 这个题使用二分查找,主要要注意边界条件. 如果left > right,就返回NULL.每次更新的 ...

  2. 36. Construct Binary Tree from Inorder and Postorder Traversal && Construct Binary Tree from Preorder and Inorder Traversal

    Construct Binary Tree from Inorder and Postorder Traversal OJ: https://oj.leetcode.com/problems/cons ...

  3. openerp学习笔记 视图继承(tree、form、search)

    支持的视图类型:form.tree.search ... 支持的定位方法:                  <notebook position="inside"> ...

  4. EasyUI –tree、combotree学习总结

    EasyUI –tree.combotree学习总结 一.   tree总结 (一).tree基本使用 tree控件是web页面中将数据分层一树形结构显示的. 使用$.fn.tree.defaults ...

  5. 主席树[可持久化线段树](hdu 2665 Kth number、SP 10628 Count on a tree、ZOJ 2112 Dynamic Rankings、codeforces 813E Army Creation、codeforces960F:Pathwalks )

    在今天三黑(恶意评分刷上去的那种)两紫的智推中,突然出现了P3834 [模板]可持久化线段树 1(主席树)就突然有了不详的预感2333 果然...然后我gg了!被大佬虐了! hdu 2665 Kth ...

  6. 适用于zTree 、EasyUI tree、EasyUI treegrid

    #region          System.Text.StringBuilder b_appline = new System.Text.StringBuilder();        Syste ...

  7. 决策树(中)-集成学习、RF、AdaBoost、Boost Tree、GBDT

    参考资料(要是对于本文的理解不够透彻,必须将以下博客认知阅读): 1. https://zhuanlan.zhihu.com/p/86263786 2.https://blog.csdn.net/li ...

  8. Linux 常用命令1 pwd、ls、cd、tab、清屏、重定向、转义、管道、touch、mkdir、tree、cat、more、rmdir、rm、grep、help、man、history、find、cp、mv、tar、gz

    版权声明:本文为博主引用文章,未经博主及作者允许不得转载.  声明: 涉及的命令:pwd.ls.cd.tab.清屏.重定向.转义.管道.touch.mkdir.tree.cat.more.rmdir. ...

  9. Stern-Brocot Tree、伪.GCD 副本

    Stern-Brocot Tree.伪.GCD 副本 伪.GCD 问题 1:\(f(a,b,c,n) = \sum_{i=0}^{n} [\frac{ai+b}{c}]\) Case 1: \(a\g ...

随机推荐

  1. 关于Struts2的类型转换详解

    详细出处参考:http://www.jb51.net/article/35465.htm 一.类型转换的意义 对于一个智能的MVC框架而言,不可避免的需要实现类型转换.因为B/S(浏览器/服务器)结构 ...

  2. TCP粘包/拆包问题的解决

    TCP粘包拆包问题 一个完整的包可能被TCP拆分成多个包,或多个小包封装成一个大的数据包发送. 解决策略 消息定长,如果不够,空位补空格 在包尾增加回车换行符进行分割,例如FTP协议 将消息分为消息头 ...

  3. 关于DCLP实现的单例模式的一些想法

    关于DCLP实现的单例模式的一些想法 我之前写过单例的文章( http://www.cnblogs.com/mkdym/p/4908644.html ),但是现在又有了一些想法,不想再在原来那篇文章上 ...

  4. ajax创建对象

    <script>     function createAjax(){         var request=false;                   //window对象中有X ...

  5. npm install Error:EPROTO: protocol error, symlink '../mime/cli.js' -> '/vagrant/src/nodejs/node_modules/express/node_modules/send/node_modules/.bin/mime'

    我在ubuntu上使用npm安装依赖是出现下面错误: npm ERR! Linux 3.13.0-101-genericnpm ERR! argv "/usr/bin/nodejs" ...

  6. Python计算机视觉3:模糊,平滑,去噪

    我是一名初学者,如果你发现文中有错误,请留言告诉我,谢谢 图像的模糊和平滑是同一个层面的意思,平滑的过程就是一个模糊的过程. 而图像的去噪可以通过图像的模糊.平滑来实现(图像去噪还有其他的方法) 那么 ...

  7. FSG压缩壳和ImportREC的使用 - 脱壳篇05

    FSG压缩壳和ImportREC的使用 - 脱壳篇05 让编程改变世界 Change the world by program FSG这个壳可以说是有点儿不守妇道,尼玛你说你一个压缩壳就实现压缩功能得 ...

  8. Histats安装Counter网站计数器 - Blog透视镜

    Histats提供十分多样性的Counter网站计数器,可以依照你个人的喜好与需求,选择适合的Counter网站计数器,也可以针对同一网站,安装多个Counter网站计数器,作法其实比注册账号时更简单 ...

  9. 微软的OneDrive研究~

    Dropbox 很好,唯一觉得不爽的是只能同步指定的目录.不过被墙之后就不那么方便了,所以改用微软的 Live Mesh,缺点是支持的设备少(仅 PC 和 Mac). https://technet. ...

  10. 大规模集群FTP代理(基于lvs的vsftpd网络负载均衡方案部署(PASV))

    [目的] 在日常工作中,我们经常需要在某服务器上开FTP(Server)服务.但就是这么简单的事情通常也会变得很复杂,原因如下:1.需要开通FTP的服务器没有公网IP地址:(即不能直接访问到)2.这样 ...