Lowest Common Ancestor of a Binary Search Tree、Lowest Common Ancestor of a Binary Search Tree
1、Lowest Common Ancestor of a Binary Search Tree
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______
/ \
___2__ ___8__
/ \ / \
0 _4 7 9
/ \
3 5
For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(root->val >= min(p->val,q->val) && root->val <= max(p->val,q->val)) return root;
if(root->val >=max(p->val,q->val)) return lowestCommonAncestor(root->left,p,q) ;
else return lowestCommonAncestor(root->right,p,q);
}
};
2、Lowest Common Ancestor of a Binary Tree
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______3______
/ \
___5__ ___1__
/ \ / \
6 _2 0 8
/ \
7 4
For example, the lowest common ancestor (LCA) of nodes 5 and 1 is 3. Another example is LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.
方法1.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { if(root == p || root == q || root == NULL) {
return root;
} TreeNode* left = lowestCommonAncestor(root->left ,p,q);
TreeNode* right = lowestCommonAncestor(root->right,p,q); if(left==NULL && right==NULL){
return NULL;
} if(left!=NULL && right==NULL){
return left;
} if(right!=NULL && left == NULL){
return right;
} return root;
}
};
方法2.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
private:
bool getPath(TreeNode* root,TreeNode* node,list<TreeNode*>& list_path){
if(root==NULL){
return false;
} list_path.push_back(root); if(root == node) {
return true;
} bool in_left = getPath(root->left,node,list_path);
if(in_left){
return true;
} bool in_right = getPath(root->right,node,list_path); if(!in_right){
list_path.pop_back();
} return in_right;
}
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
list<TreeNode*> list_path_p,list_path_q; bool list_path_p_exist = getPath(root,p,list_path_p);
bool list_path_q_exist = getPath(root,q,list_path_q); if(!list_path_p_exist && !list_path_q_exist){
return NULL;
} TreeNode* res = NULL;
while(list_path_p.front() == list_path_q.front()){
res = list_path_p.front();
list_path_p.pop_front();
list_path_q.pop_front();
} return res;
}
};
Lowest Common Ancestor of a Binary Search Tree、Lowest Common Ancestor of a Binary Search Tree的更多相关文章
- leetcode 108. Convert Sorted Array to Binary Search Tree 、109. Convert Sorted List to Binary Search Tree
108. Convert Sorted Array to Binary Search Tree 这个题使用二分查找,主要要注意边界条件. 如果left > right,就返回NULL.每次更新的 ...
- 36. Construct Binary Tree from Inorder and Postorder Traversal && Construct Binary Tree from Preorder and Inorder Traversal
Construct Binary Tree from Inorder and Postorder Traversal OJ: https://oj.leetcode.com/problems/cons ...
- openerp学习笔记 视图继承(tree、form、search)
支持的视图类型:form.tree.search ... 支持的定位方法: <notebook position="inside"> ...
- EasyUI –tree、combotree学习总结
EasyUI –tree.combotree学习总结 一. tree总结 (一).tree基本使用 tree控件是web页面中将数据分层一树形结构显示的. 使用$.fn.tree.defaults ...
- 主席树[可持久化线段树](hdu 2665 Kth number、SP 10628 Count on a tree、ZOJ 2112 Dynamic Rankings、codeforces 813E Army Creation、codeforces960F:Pathwalks )
在今天三黑(恶意评分刷上去的那种)两紫的智推中,突然出现了P3834 [模板]可持久化线段树 1(主席树)就突然有了不详的预感2333 果然...然后我gg了!被大佬虐了! hdu 2665 Kth ...
- 适用于zTree 、EasyUI tree、EasyUI treegrid
#region System.Text.StringBuilder b_appline = new System.Text.StringBuilder(); Syste ...
- 决策树(中)-集成学习、RF、AdaBoost、Boost Tree、GBDT
参考资料(要是对于本文的理解不够透彻,必须将以下博客认知阅读): 1. https://zhuanlan.zhihu.com/p/86263786 2.https://blog.csdn.net/li ...
- Linux 常用命令1 pwd、ls、cd、tab、清屏、重定向、转义、管道、touch、mkdir、tree、cat、more、rmdir、rm、grep、help、man、history、find、cp、mv、tar、gz
版权声明:本文为博主引用文章,未经博主及作者允许不得转载. 声明: 涉及的命令:pwd.ls.cd.tab.清屏.重定向.转义.管道.touch.mkdir.tree.cat.more.rmdir. ...
- Stern-Brocot Tree、伪.GCD 副本
Stern-Brocot Tree.伪.GCD 副本 伪.GCD 问题 1:\(f(a,b,c,n) = \sum_{i=0}^{n} [\frac{ai+b}{c}]\) Case 1: \(a\g ...
随机推荐
- 关于Struts2的类型转换详解
详细出处参考:http://www.jb51.net/article/35465.htm 一.类型转换的意义 对于一个智能的MVC框架而言,不可避免的需要实现类型转换.因为B/S(浏览器/服务器)结构 ...
- TCP粘包/拆包问题的解决
TCP粘包拆包问题 一个完整的包可能被TCP拆分成多个包,或多个小包封装成一个大的数据包发送. 解决策略 消息定长,如果不够,空位补空格 在包尾增加回车换行符进行分割,例如FTP协议 将消息分为消息头 ...
- 关于DCLP实现的单例模式的一些想法
关于DCLP实现的单例模式的一些想法 我之前写过单例的文章( http://www.cnblogs.com/mkdym/p/4908644.html ),但是现在又有了一些想法,不想再在原来那篇文章上 ...
- ajax创建对象
<script> function createAjax(){ var request=false; //window对象中有X ...
- npm install Error:EPROTO: protocol error, symlink '../mime/cli.js' -> '/vagrant/src/nodejs/node_modules/express/node_modules/send/node_modules/.bin/mime'
我在ubuntu上使用npm安装依赖是出现下面错误: npm ERR! Linux 3.13.0-101-genericnpm ERR! argv "/usr/bin/nodejs" ...
- Python计算机视觉3:模糊,平滑,去噪
我是一名初学者,如果你发现文中有错误,请留言告诉我,谢谢 图像的模糊和平滑是同一个层面的意思,平滑的过程就是一个模糊的过程. 而图像的去噪可以通过图像的模糊.平滑来实现(图像去噪还有其他的方法) 那么 ...
- FSG压缩壳和ImportREC的使用 - 脱壳篇05
FSG压缩壳和ImportREC的使用 - 脱壳篇05 让编程改变世界 Change the world by program FSG这个壳可以说是有点儿不守妇道,尼玛你说你一个压缩壳就实现压缩功能得 ...
- Histats安装Counter网站计数器 - Blog透视镜
Histats提供十分多样性的Counter网站计数器,可以依照你个人的喜好与需求,选择适合的Counter网站计数器,也可以针对同一网站,安装多个Counter网站计数器,作法其实比注册账号时更简单 ...
- 微软的OneDrive研究~
Dropbox 很好,唯一觉得不爽的是只能同步指定的目录.不过被墙之后就不那么方便了,所以改用微软的 Live Mesh,缺点是支持的设备少(仅 PC 和 Mac). https://technet. ...
- 大规模集群FTP代理(基于lvs的vsftpd网络负载均衡方案部署(PASV))
[目的] 在日常工作中,我们经常需要在某服务器上开FTP(Server)服务.但就是这么简单的事情通常也会变得很复杂,原因如下:1.需要开通FTP的服务器没有公网IP地址:(即不能直接访问到)2.这样 ...