B. New Year Permutation
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

User ainta has a permutation p1, p2, ..., pn. As the New Year is coming, he wants to make his permutation as pretty as possible.

Permutation a1, a2, ..., an is prettier than permutation b1, b2, ..., bn, if and only if there exists an integer k (1 ≤ k ≤ n) where a1 = b1, a2 = b2, ..., ak - 1 = bk - 1 and ak < bk all holds.

As known, permutation p is so sensitive that it could be only modified by swapping two distinct elements. But swapping two elements is harder than you think. Given an n × n binary matrixA, user ainta can swap the values of pi and pj (1 ≤ i, j ≤ ni ≠ j) if and only if Ai, j = 1.

Given the permutation p and the matrix A, user ainta wants to know the prettiest permutation that he can obtain.

Input

The first line contains an integer n (1 ≤ n ≤ 300) — the size of the permutation p.

The second line contains n space-separated integers p1, p2, ..., pn — the permutation p that user ainta has. Each integer between 1 and n occurs exactly once in the given permutation.

Next n lines describe the matrix A. The i-th line contains n characters '0' or '1' and describes the i-th row of A. The j-th character of the i-th line Ai, j is the element on the intersection of the i-th row and the j-th column of A. It is guaranteed that, for all integers i, j where 1 ≤ i < j ≤ nAi, j = Aj, i holds. Also, for all integers i where 1 ≤ i ≤ nAi, i = 0holds.

Output

In the first and only line, print n space-separated integers, describing the prettiest permutation that can be obtained.

Sample test(s)
Input
7
5 2 4 3 6 7 1
0001001
0000000
0000010
1000001
0000000
0010000
1001000
Output
1 2 4 3 6 7 5
Input
5
4 2 1 5 3
00100
00011
10010
01101
01010
Output
1 2 3 4 5
Note

In the first sample, the swap needed to obtain the prettiest permutation is: (p1, p7).

In the second sample, the swaps needed to obtain the prettiest permutation is (p1, p3), (p4, p5), (p3, p4).

A permutation p is a sequence of integers p1, p2, ..., pn, consisting of n distinct positive integers, each of them doesn't exceed n. The i-th element of the permutation p is denoted as pi. The size of the permutation p is denoted as n.

这题是给出交换矩阵,求交换完字典序最小

原来我是这样想的

n^2暴力枚举i<j,a[i]>a[j]的一对交换,换到最后没了就好了。这样每次至少减少1逆序对,做n次不就完了吗 恩才n^3可以接受

(阿连哭死在厕所)

妈蛋当时我到底在想什么……逆序对个数是n^2啊……要n^4不爆才怪

我们发现如果a[i]、a[j]可以互换,那么i和j是连通的。在同一联通块中的元素都是可以互换的

联通块可以直接用并查集或者floyd搞出来

然后从小到大枚举每一个位置,用它所在联通块中没取到的最小元素填进去

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<set>
#include<map>
#include<ctime>
#include<iomanip>
#define LL long long
#define inf 0x7ffffff
#define N 200010
using namespace std;
inline LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int n;
int a[1010];
bool mrk[1010];
bool p[1010][1010];
int main()
{
n=read();
for (LL i=1;i<=n;i++)a[i]=read();
for (int i=1;i<=n;i++)
{
char ch[1010];scanf("%s",ch+1);
for (int j=1;j<=n;j++)
if (ch[j]=='1')p[i][j]=1;
p[i][i]=1;
}
for (int k=1;k<=n;k++)
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
if(p[i][k]&&p[k][j])p[i][j]=1;
memset(mrk,1,sizeof(mrk));
for (int i=1;i<=n;i++)
{
int mn=inf,res=0;
for (int j=1;j<=n;j++)
if (mrk[j]&&p[i][j]&&a[j]<mn)
{
mn=a[j];
res=j;
}
mrk[res]=0;
printf("%d ",mn);
}
return 0;
}

cf500B New Year Permutation的更多相关文章

  1. Floyd算法详解

    Floyd本质上使用了DP思想,我们定义\(d[k][x][y]\)为允许经过前k个节点时,节点x与节点y之间的最短路径长度,显然初始值应该为\(d[k][x][y] = +\infin (k, x, ...

  2. Codeforces 500B. New Year Permutation[连通性]

    B. New Year Permutation time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  3. Permutation Sequence

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  4. [LeetCode] Palindrome Permutation II 回文全排列之二

    Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empt ...

  5. [LeetCode] Palindrome Permutation 回文全排列

    Given a string, determine if a permutation of the string could form a palindrome. For example," ...

  6. [LeetCode] Permutation Sequence 序列排序

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  7. [LeetCode] Next Permutation 下一个排列

    Implement next permutation, which rearranges numbers into the lexicographically next greater permuta ...

  8. Leetcode 60. Permutation Sequence

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  9. UVA11525 Permutation[康托展开 树状数组求第k小值]

    UVA - 11525 Permutation 题意:输出1~n的所有排列,字典序大小第∑k1Si∗(K−i)!个 学了好多知识 1.康托展开 X=a[n]*(n-1)!+a[n-1]*(n-2)!+ ...

随机推荐

  1. Project Euler problem 61

    题意很明了. 然后我大概的做法就是暴搜了 先把每个几边形数中四位数的处理出来. 然后我就DFS回溯着找就行了. 比较简单吧. #include <cstdio> #include < ...

  2. JSP具体篇——out

    out对象 out对象用于在web浏览器上输出信息,而且管理应用server上的输出缓冲区.在使用out对象输出数据时.能够对数据缓冲区进行操作.及时清除缓冲区中残留的数据.为其它输出让出缓冲空间. ...

  3. linux配置时间同步

    目标环境,5台linux centos 6.3, 一台作为NTPD服务与外部公共NTP服务同步时间,同时作为内网的NTPD服务器,其他机器与这台服务做时间同步.  服务器IP 角色   说明 同步方式 ...

  4. 快速使用shortcut,适配各种ROM

    地址(徐医生的GitHub):https://github.com/xuyisheng/ShortcutHelper 常用API     /**      * 添加快捷方式      *      * ...

  5. 话付通SDK 聚合支付

    步骤 官网:http://www.71pay.cn/ 1.导入Jar包----将HeepayPlugin.jar,HftJuhePay.jar 包放入工程指定的libs目录. 2.配置清单文件---- ...

  6. css内容生成器

    一,内容生成器:content 补充before和after伪类选择器: 1):将内容添加到某个选择器定义的单个或者多个元素的每一个实例之前或者之后 2)与before选择器配合使用(同理大家想下会不 ...

  7. swift 闭包 由浅入深 优化

    //: Playground - noun: a place where people can play import UIKit ////////////////////////////////// ...

  8. iOS 网络与多线程--1.检测网络链接状态

    通过Reachability库,检测设备的网络连接状况. 使用到的类库:Reachability Reachability库,是一个iOS环境下,检测设备网络状态的库,可以在网络上搜索下载. 使用之前 ...

  9. QT参考录

    源码参考: #include "CServerManager.h" CServerManager* CServerManager::m_pInstance = NULL; CSer ...

  10. javascript访问级别

    JavaScript中没有官方的访问级别语法,JavaScript没有类似于Java语言智能搞得private或protected这样的访问级别关键字,默认情况下,,对象中所有的成员都是公有和可访问的 ...