B. New Year Permutation
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

User ainta has a permutation p1, p2, ..., pn. As the New Year is coming, he wants to make his permutation as pretty as possible.

Permutation a1, a2, ..., an is prettier than permutation b1, b2, ..., bn, if and only if there exists an integer k (1 ≤ k ≤ n) where a1 = b1, a2 = b2, ..., ak - 1 = bk - 1 and ak < bk all holds.

As known, permutation p is so sensitive that it could be only modified by swapping two distinct elements. But swapping two elements is harder than you think. Given an n × n binary matrixA, user ainta can swap the values of pi and pj (1 ≤ i, j ≤ ni ≠ j) if and only if Ai, j = 1.

Given the permutation p and the matrix A, user ainta wants to know the prettiest permutation that he can obtain.

Input

The first line contains an integer n (1 ≤ n ≤ 300) — the size of the permutation p.

The second line contains n space-separated integers p1, p2, ..., pn — the permutation p that user ainta has. Each integer between 1 and n occurs exactly once in the given permutation.

Next n lines describe the matrix A. The i-th line contains n characters '0' or '1' and describes the i-th row of A. The j-th character of the i-th line Ai, j is the element on the intersection of the i-th row and the j-th column of A. It is guaranteed that, for all integers i, j where 1 ≤ i < j ≤ nAi, j = Aj, i holds. Also, for all integers i where 1 ≤ i ≤ nAi, i = 0holds.

Output

In the first and only line, print n space-separated integers, describing the prettiest permutation that can be obtained.

Sample test(s)
Input
7
5 2 4 3 6 7 1
0001001
0000000
0000010
1000001
0000000
0010000
1001000
Output
1 2 4 3 6 7 5
Input
5
4 2 1 5 3
00100
00011
10010
01101
01010
Output
1 2 3 4 5
Note

In the first sample, the swap needed to obtain the prettiest permutation is: (p1, p7).

In the second sample, the swaps needed to obtain the prettiest permutation is (p1, p3), (p4, p5), (p3, p4).

A permutation p is a sequence of integers p1, p2, ..., pn, consisting of n distinct positive integers, each of them doesn't exceed n. The i-th element of the permutation p is denoted as pi. The size of the permutation p is denoted as n.

这题是给出交换矩阵,求交换完字典序最小

原来我是这样想的

n^2暴力枚举i<j,a[i]>a[j]的一对交换,换到最后没了就好了。这样每次至少减少1逆序对,做n次不就完了吗 恩才n^3可以接受

(阿连哭死在厕所)

妈蛋当时我到底在想什么……逆序对个数是n^2啊……要n^4不爆才怪

我们发现如果a[i]、a[j]可以互换,那么i和j是连通的。在同一联通块中的元素都是可以互换的

联通块可以直接用并查集或者floyd搞出来

然后从小到大枚举每一个位置,用它所在联通块中没取到的最小元素填进去

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<set>
#include<map>
#include<ctime>
#include<iomanip>
#define LL long long
#define inf 0x7ffffff
#define N 200010
using namespace std;
inline LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int n;
int a[1010];
bool mrk[1010];
bool p[1010][1010];
int main()
{
n=read();
for (LL i=1;i<=n;i++)a[i]=read();
for (int i=1;i<=n;i++)
{
char ch[1010];scanf("%s",ch+1);
for (int j=1;j<=n;j++)
if (ch[j]=='1')p[i][j]=1;
p[i][i]=1;
}
for (int k=1;k<=n;k++)
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
if(p[i][k]&&p[k][j])p[i][j]=1;
memset(mrk,1,sizeof(mrk));
for (int i=1;i<=n;i++)
{
int mn=inf,res=0;
for (int j=1;j<=n;j++)
if (mrk[j]&&p[i][j]&&a[j]<mn)
{
mn=a[j];
res=j;
}
mrk[res]=0;
printf("%d ",mn);
}
return 0;
}

cf500B New Year Permutation的更多相关文章

  1. Floyd算法详解

    Floyd本质上使用了DP思想,我们定义\(d[k][x][y]\)为允许经过前k个节点时,节点x与节点y之间的最短路径长度,显然初始值应该为\(d[k][x][y] = +\infin (k, x, ...

  2. Codeforces 500B. New Year Permutation[连通性]

    B. New Year Permutation time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  3. Permutation Sequence

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  4. [LeetCode] Palindrome Permutation II 回文全排列之二

    Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empt ...

  5. [LeetCode] Palindrome Permutation 回文全排列

    Given a string, determine if a permutation of the string could form a palindrome. For example," ...

  6. [LeetCode] Permutation Sequence 序列排序

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  7. [LeetCode] Next Permutation 下一个排列

    Implement next permutation, which rearranges numbers into the lexicographically next greater permuta ...

  8. Leetcode 60. Permutation Sequence

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  9. UVA11525 Permutation[康托展开 树状数组求第k小值]

    UVA - 11525 Permutation 题意:输出1~n的所有排列,字典序大小第∑k1Si∗(K−i)!个 学了好多知识 1.康托展开 X=a[n]*(n-1)!+a[n-1]*(n-2)!+ ...

随机推荐

  1. SKTextureAtlas类

    继承自 NSObject 符合 NSCodingNSObject(NSObject) 框架  /System/Library/Frameworks/SpriteKit.framework 可用性 可用 ...

  2. gzip优化网络传输量提高传输效率[转]

    using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.IO;us ...

  3. swift开发笔记24 解决键盘遮挡输入框 的方法

    很简单,就是开始输入时把整个view的frame上移,也就是把y值减小就行了,至于减少多少自己调 ,也可以动态获取参见(http://blog.csdn.net/lengshengren/articl ...

  4. 百练2755 奇妙的口袋 【深搜】or【动规】or【普通递归】or【递推】

    总Time Limit:  10000ms  Memory Limit:  65536kB 有一个奇妙的口袋.总的容积是40,用这个口袋能够变出一些物品,这些物品的整体积必须是40.John如今有n个 ...

  5. java socker编程

    转自http://haohaoxuexi.iteye.com/blog/1979837 对于Java Socket编程而言,有两个概念,一个是ServerSocket,一个是Socket.服务端和客户 ...

  6. 如何实现数字lcd显示效果(原创)

    如题,我最先想到的是找一种字体,然后来显示lcd的效果,但是字体又无法满足有空位的时候那个暗灰色的文字的效果,如下所示 就是前三位那些灰色的888,因为你设置数值的时候只能是从0-9的数字,而这灰色的 ...

  7. python代码合并

    http://www.baidu.com/s?wd=python%E4%BB%A3%E7%A0%81%E5%90%88%E5%B9%B6&rsv_bp=0&ch=&tn=mon ...

  8. 手机Web网站,设置拒绝电脑访问

    最近一段时间,都在使用Jquery-Mobile + MVC做手机Web,有一些心得.体会 下面介绍如何拒绝电脑访问手机网站 电脑的浏览器,跟手机的浏览器内核不一样,这是我设置拒绝访问的思路. 下面是 ...

  9. 关于导出oracle多个表的建表语句DLL,生成.sql语句。

    --('TABLE','LINE','ODS_XX')这里面的表和用户都需要大写.如果表名用户名不大写会报这个错误:对象 "emp" 属于类型 TABLE, 在方案 "s ...

  10. java代码实现 金字塔(倒置)

    在jsp中实现如图所示的金字塔,,代码如下: 大致思路如下: 1.先画出前5行.因为 i+空格数=总行数,所以第一行的空格数是 总行数-i(第几行),然后画出 *,*的数目=2*i-11: 2.在画出 ...