题解:

考虑枚举gcd,然后问题转化为求<=n且与n互质的数的和。

这是有公式的f[i]=phi[i]*i/2

然后卡一卡时就可以过了。

代码:

 #include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define inf 1000000000
#define maxn 1000000+5
#define maxm 100000+5
#define eps 1e-10
#define ll long long
#define pa pair<int,int>
#define for0(i,n) for(int i=0;i<=(n);i++)
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for2(i,x,y) for(int i=(x);i<=(y);i++)
#define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define for4(i,x) for(int i=head[x],y=e[i].go;i;i=e[i].next,y=e[i].go)
#define mod 1000000007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
int tot,p[maxn];
ll fai[maxn];
bool v[maxn];
void get()
{
fai[]=;
for2(i,,)
{
if(!v[i])p[++tot]=i,fai[i]=i-;
for1(j,tot)
{
int k=i*p[j];
if(k>)break;
v[k]=;
if(i%p[j])fai[k]=fai[i]*(p[j]-);
else {fai[k]=fai[i]*p[j];break;}
}
}
for2(i,,)(fai[i]*=(ll)i)>>=;
}
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
get();
int T=read();
while(T--)
{
int n=read(),m=sqrt(n);ll ans=;
for1(i,m)if(n%i==)ans+=fai[n/i]+fai[i];
if(m*m==n)ans-=fai[m];
printf("%lld\n",ans*(ll)n);
}
return ;
}

UPD:其实我们可以预处理出答案,用普通的筛法。

代码:

 #include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define inf 1000000000
#define maxn 1000000+5
#define maxm 1000000
#define eps 1e-10
#define ll long long
#define pa pair<int,int>
#define for0(i,n) for(int i=0;i<=(n);i++)
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for2(i,x,y) for(int i=(x);i<=(y);i++)
#define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define for4(i,x) for(int i=head[x],y=e[i].go;i;i=e[i].next,y=e[i].go)
#define mod 1000000007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
int tot,p[maxn];
ll fai[maxn],ans[maxn];
bool v[maxn];
void get()
{
fai[]=;
for2(i,,maxm)
{
if(!v[i])p[++tot]=i,fai[i]=i-;
for1(j,tot)
{
int k=i*p[j];
if(k>maxm)break;
v[k]=;
if(i%p[j])fai[k]=fai[i]*(p[j]-);
else {fai[k]=fai[i]*p[j];break;}
}
}
for2(i,,maxm)(fai[i]*=(ll)i)>>=;
for1(i,maxm)
for(int j=i;j<=maxm;j+=i)
ans[j]+=fai[i];
for1(i,maxm)ans[i]*=(ll)i;
}
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
get();
int T=read();
while(T--)printf("%lld\n",ans[read()]);
return ;
}

2226: [Spoj 5971] LCMSum

Time Limit: 20 Sec  Memory Limit: 259 MB
Submit: 659  Solved: 292
[Submit][Status]

Description

Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n,n), where LCM(i,n) denotes the Least Common Multiple of the integers i and n.

Input

The first line contains T the number of test cases. Each of the next T lines contain an integer n.

Output

Output T lines, one for each test case, containing the required sum.

Sample Input

3
1
2
5

Sample Output

1
4
55

HINT

Constraints

1 <= T <= 300000
1 <= n <= 1000000

BZOJ2226: [Spoj 5971] LCMSum的更多相关文章

  1. 【BZOJ2226】[Spoj 5971] LCMSum 莫比乌斯反演(欧拉函数?)

    [BZOJ2226][Spoj 5971] LCMSum Description Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n ...

  2. bzoj 2226: [Spoj 5971] LCMSum 数论

    2226: [Spoj 5971] LCMSum Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 578  Solved: 259[Submit][St ...

  3. BZOJ 2226 [Spoj 5971] LCMSum 最大公约数之和 | 数论

    BZOJ 2226 [Spoj 5971] LCMSum 这道题和上一道题十分类似. \[\begin{align*} \sum_{i = 1}^{n}\operatorname{LCM}(i, n) ...

  4. 【bzoj2226】[Spoj 5971] LCMSum 欧拉函数

    题目描述 Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n,n), where LCM(i,n) denotes the Leas ...

  5. BZOJ 2226 [Spoj 5971] LCMSum | 数论拆式子

    题目: http://www.lydsy.com/JudgeOnline/problem.php?id=2226 题解: 题目要求的是Σn*i/gcd(i,n) i∈[1,n] 把n提出来变成Σi/g ...

  6. BZOJ 2226: [Spoj 5971] LCMSum 莫比乌斯反演 + 严重卡常

    Code: #pragma GCC optimize(2) #include<bits/stdc++.h> #define setIO(s) freopen(s".in" ...

  7. BZOJ 2226 [Spoj 5971] LCMSum

    题解:枚举gcd,算每个gcd对答案的贡献,贡献用到欧拉函数的一个结论 最后用nlogn预处理一下,O(1)出答案 把long long 打成int 竟然没看出来QWQ #include<ios ...

  8. BZOJ 2226 【SPOJ 5971】 LCMSum

    题目链接:LCMSum 这个题显然就是要我们推式子了……那么就来推一波: \begin{aligned}&\sum_{i=1}^n lcm(i,n) \\=&\sum_{i=1}^n\ ...

  9. 【spoj 5971】lcmsum

    全场都 AK 了就我爆 0 了 题意 \(t\) 组询问,每组询问给定 \(n\),求 \(\sum\limits_{k=1}^n [n,k]\).其中 \([a,b]\) 表示 \(a\) 和 \( ...

随机推荐

  1. Enterprise Library 6——Using the Logging Application Block

    原文参考 http://msdn.microsoft.com/en-us/library/dn440731(v=pandp.60).aspx 一.简介 .更重要的是用于审计.这种日志可以跟踪用户的行为 ...

  2. [转载]C#时间函数

    本文转自livedanta的博客的<C#时间函数> DateTime DateTime dt = DateTime.Now; dt.ToString();//2005-11-5 13:21 ...

  3. (C#)的命名规范

    http://gray.iteye.com/blog/644626 http://developer.51cto.com/art/200908/143787.htm http://blog.csdn. ...

  4. 2436: [Noi2011]Noi嘉年华 - BZOJ

    Description NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不同的地点举办.每个嘉年华可能包含很多个活动, ...

  5. 3573: [Hnoi2014]米特运输 - BZOJ

    Description米特是D星球上一种非常神秘的物质,蕴含着巨大的能量.在以米特为主要能源的D星上,这种米特能源的运输和储存一直是一个大问题.    D星上有N个城市,我们将其顺序编号为1到N,1号 ...

  6. [设计模式] 23 访问者模式 visitor Pattern

    在GOF的<设计模式:可复用面向对象软件的基础>一书中对访问者模式是这样说的:表示一个作用于某对象结构中的各元素的操作.它使你可以在不改变各元素的类的前提下定义作用于这些元素的新操作.访问 ...

  7. Spring事务配置的五种方式(转)

    前段时间对Spring的事务配置做了比较深入的研究,在此之间对Spring的事务配置虽说也配置过,但是一直没有一个清楚的认识.通过这次的学习发觉Spring的事务配置只要把思路理清,还是比较好掌握的. ...

  8. Mysql忘记密码修改密码

    问题重现(以下讨论范围仅限Windows环境): C:\AppServ\MySQL> mysql -u root -p Enter password: ERROR 1045 (28000): A ...

  9. codeforces 397B

    #include <cstdio> #include <cstdlib> #include <cmath> #include <map> #includ ...

  10. jquery加入收藏代码

    <html> <head> <script type="text/javascript" src="jquery-1.9.1.js" ...