Codeforces Round #333 (Div. 2) B. Approximating a Constant Range st 二分
B. Approximating a Constant Range
Time Limit: 20 Sec
Memory Limit: 256 MB
题目连接
http://codeforces.com/contest/602/problem/B
Description
When Xellos was doing a practice course in university, he once had to measure the intensity of an effect that slowly approached equilibrium. A good way to determine the equilibrium intensity would be choosing a sufficiently large number of consecutive data points that seems as constant as possible and taking their average. Of course, with the usual sizes of data, it's nothing challenging — but why not make a similar programming contest problem while we're at it?
You're given a sequence of n data points a1, ..., an. There aren't any big jumps between consecutive data points — for each 1 ≤ i < n, it's guaranteed that |ai + 1 - ai| ≤ 1.
A range [l, r] of data points is said to be almost constant if the difference between the largest and the smallest value in that range is at most 1. Formally, let M be the maximum and m the minimum value of ai for l ≤ i ≤ r; the range [l, r] is almost constant if M - m ≤ 1.
Find the length of the longest almost constant range.
Input
The first line of the input contains a single integer n (2 ≤ n ≤ 100 000) — the number of data points.
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 100 000).
Output
Print a single number — the maximum length of an almost constant range of the given sequence.
Sample Input
5
1 2 3 3 2
Sample Output
4
HINT
题意
给你n个数,要求你找到最长的区间,使得这个区间的最大值减去最小值之差的绝对值小于等于1
题解:
枚举每一个数,以这个数为这个区间的最小值,能够往左边延伸多少,往右边延伸多少
再枚举每一个数,以这个数为区间的最大值,能够往左边延伸多少,往右边延伸多少就好了
可以O(n) 也可以 像我一样 用倍增然后二分去找
代码:
#include<iostream>
#include<stdio.h>
#include<algorithm>
using namespace std;
#define maxn 100005
int n;
int dp[maxn][];
int dp1[maxn][];
int a[maxn];
int L[maxn],R[maxn];
int mm[maxn];
void initrmp(int n)
{
mm[]=-;
for(int i=;i<=n;i++)
{
mm[i]=((i&(i-))==)?mm[i-]+:mm[i-];
dp[i][]=a[i];
dp1[i][]=a[i];
}
for(int j = ;j<=mm[n];j++)
for(int i=;i+(<<j)-<=n;i++)
dp[i][j]=max(dp[i][j-],dp[i+(<<(j-))][j-]);
for(int j = ;j<=mm[n];j++)
for(int i=;i+(<<j)-<=n;i++)
dp1[i][j]=min(dp1[i][j-],dp1[i+(<<(j-))][j-]);
}
int queryMax(int l,int r)
{
int k = mm[r-l+];
return max(dp[l][k],dp[r-(<<k)+][k]);
}
int queryMin(int l,int r)
{
int k = mm[r-l+];
return min(dp1[l][k],dp1[r-(<<k)+][k]);
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
int Ans = ;
initrmp(n);
for(int i=;i<=n;i++)
{
int l=,r=i;
while(l<=r)
{
int mid = (l+r)/;
if(abs(a[i]-queryMin(mid,i))<= && abs(a[i]-queryMax(mid,i))<=)r=mid-;
else l=mid+;
}
L[i]=l;
l=i,r=n;
while(l<=r)
{
int mid = (l+r)/;
if(abs(a[i]-queryMin(i,mid))<= && abs(a[i]-queryMax(i,mid))<=)l=mid+;
else r=mid-;
}
R[i]=l-;
}
for(int i=;i<=n;i++)
Ans = max(Ans,R[i]-L[i]+);
for(int i=;i<=n;i++)
{
int l=,r=i;
while(l<=r)
{
int mid = (l+r)/;
if(abs(a[i]-queryMin(mid,i))<= && abs(a[i]-queryMax(mid,i))<=)r=mid-;
else l=mid+;
}
L[i]=l;
l=i,r=n;
while(l<=r)
{
int mid = (l+r)/;
if(abs(a[i]-queryMin(i,mid))<= && abs(a[i]-queryMax(i,mid))<=)l=mid+;
else r=mid-;
}
R[i]=l-;
}
for(int i=;i<=n;i++)
Ans = max(Ans,R[i]-L[i]+);
cout<<Ans<<endl;
}
Codeforces Round #333 (Div. 2) B. Approximating a Constant Range st 二分的更多相关文章
- Codeforces Round #333 (Div. 2) B. Approximating a Constant Range
B. Approximating a Constant Range Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com ...
- Codeforces Round #333 (Div. 2)
水 A - Two Bases 水题,但是pow的精度不高,应该是转换成long long精度丢失了干脆直接double就可以了.被hack掉了.用long long能存的下 #include < ...
- Codeforces Round #333 (Div. 2) B
B. Approximating a Constant Range time limit per test 2 seconds memory limit per test 256 megabytes ...
- Codeforces Round #333 (Div. 1) C. Kleofáš and the n-thlon 树状数组优化dp
C. Kleofáš and the n-thlon Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contes ...
- Codeforces Round #333 (Div. 1) B. Lipshitz Sequence 倍增 二分
B. Lipshitz Sequence Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/601/ ...
- Codeforces Round #333 (Div. 2) C. The Two Routes flyod
C. The Two Routes Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/602/pro ...
- Codeforces Round #333 (Div. 2) A. Two Bases 水题
A. Two Bases Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/602/problem/ ...
- Codeforces Round #333 (Div. 1) D. Acyclic Organic Compounds trie树合并
D. Acyclic Organic Compounds You are given a tree T with n vertices (numbered 1 through n) and a l ...
- Codeforces Round #333 (Div. 1)--B. Lipshitz Sequence 单调栈
题意:n个点, 坐标已知,其中横坐标为为1~n. 求区间[l, r] 的所有子区间内斜率最大值的和. 首先要知道,[l, r]区间内最大的斜率必然是相邻的两个点构成的. 然后问题就变成了求区间[l, ...
随机推荐
- PL/SQL中LOOP循环控制语句
在PL/SQL中可以使用LOOP语句对数据进行循环处理,利用该语句可以循环执行指定的语句序列.常用的LOOP循环语句包含3种形式:基本的LOOP.WHILE...LOOP和FOR...LOOP. LO ...
- Delphi 函数参数修饰中的var 、out和const
(1)var修饰符 添加var 是地址传递,会修改原有的变量 var s: string; begin S := 'Hello'; ChangeSVar(s); ShowMessage(S); e ...
- Metaspace 之一--java8 去掉 perm 用 Metaspace 来替代
正如大家所知,JDK 8 Early Access版已经提供下载.这使开发者可以体验Java8的新特性.其中之一,是Oracle从JDK7发布以来就一直宣称的要完全移除永久代空间.例如,字符串内部池, ...
- Android主题theme和风格style总结
用到了Android的主题和风格,感觉很多地方需要总结和记录下来.其实主题和风格是有很大的作用的,特别是界面要求比较高的客户端. Style:是一个包含一种或者多种格式化属性的集合,我们可以将其用为一 ...
- linux 安装jdk 配置tomcat
Linux(ubuntu)下安装JDK.Tomcat 一.安装jdk 1)首先以root用户登录进去,在根目录下建立/usr/java的目录,我们将下载的东西都放到该目录下去. 2)参考的https: ...
- (转)我是如何在SQLServer中处理每天四亿三千万记录的
首先声明,我只是个程序员,不是专业的DBA,以下这篇文章是从一个问题的解决过程去写的,而不是一开始就给大家一个正确的结果,如果文中有不对的地方,请各位数据库大牛给予指正,以便我能够更好的处理此次业务. ...
- 你认为你很了解Javascript?
(翻译不当之处请谅解) 来源:http://www.ido321.com/914.html 这里有5个小脚本,有助于你真正理解JavaScript核心–闭包和作用域.没有在控制台运行之前,尝试回答每个 ...
- 五指cms内容浏览量实现方法
实现功能:文章浏览量的统计显示 实现的详细:对文章的总浏览量.当天浏览量.当周浏览量.当月浏览量进行统计 实现代码位置:coreframe/app/content/stat.php 实现的详细代码: ...
- Java 从单核到多核的多线程(并发)
JAVA 并发编程 最初计算机是单任务的,然后发展到多任务,接着出现多线程并行,同时计算机也从单cpu进入到多cpu.如下图: 多任务:其实就是利用操作系统时间片轮转使用的原理.操作系统通 ...
- Uva 208 - Firetruck
[题目链接]http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=24&p ...