For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and its inverse is $$\bex \sex{\ba{cc} I&-A\\ 0&I \ea}. \eex$$ Use this to show that if $A,B$ are any two $n\times n$ matrices, then $$\bex \sex{\ba{cc} I&A\\ 0&I \ea}^{-1}\sex{\ba{cc} AB&0\\ B&0 \ea} \sex{\ba{cc} I&A\\ 0&I \ea}=\sex{\ba{cc} 0&0\\ B&BA \ea}. \eex$$ This implies that $AB$ and $BA$ have the same eigenvalues.(This last fact can be proved in another way as follows. If $B$ is invertible, then $AB=B^{-1}(BA)B$. So, $AB$ and $BA$ have the same eigenvalues. Since invertible matrices are dense in the space of matrices, and a general known fact in complex analysis is that the roots of a polynomial vary continuously with the coefficients, the above conclusion also holds in general.)

Solution. This follows from direct computations.

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. 【BZOJ 2301】[HAOI2011]Problem b

    Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...

  2. oracle安装完成后解锁scott用户

    需要以管理员的身份 进行 解锁scott alter user scott account unlock;

  3. Jetty 与 Tomcat 比较,及性能分析

    主流java的web容器,主要是Tomcat, jboss, jetty, resin.由于以前我们主要用的是jboss4.0.5,但jbosse用的servlet容器是tomcat5.5,所以只进行 ...

  4. python学习笔记1(语法)

    语法 从"Hello,world"开始看吧,我们学的很多语言都是从helloworld开始的. >>> 1 + 1 2 >>> print 'H ...

  5. TWaver初学实战——如何在TWaver属性表中添加日历控件?

    在日期输入框中添加日历控件,是一种非常流行和实用的做法.临渊羡鱼不如退而写代码,今天就看看在TWaver中是如何实现的.   资源准备   TWaver的在线使用文档中,就有TWaver Proper ...

  6. Linux学习笔记(2)-用户和用户组

    用户(user)和用户组(group)概念 linux是一个多用户操作系统,他允许多个用户登录linux系统进行各自不同的操作.为了方便管理用户不同的权限,组的概念应用而生,一个组可以包含多个用户,共 ...

  7. The 6th Zhejiang Provincial Collegiate Programming Contest->ProblemB:Light Bulb

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3203 题意:求影子的最长长度L; 当灯,人头和墙角成一条直线时(假设此时人 ...

  8. 抽象工厂模式(python版)

    http://blog.csdn.net/ponder008/article/details/6886039 抽象工厂模式:提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类.优点:易 ...

  9. HDU4631+Set+最近点对

    题意:一个空平面,每次增加一个点, 其坐标根据上一个点算出:(x[i-1] * Ax + Bx ) mod Cx,(y[i-1] * Ay + By ) mod Cy 求出现有点集中的最近点对的距离的 ...

  10. linux 配置java环境变量

    修改/etc/profile文件 如果你的计算机仅仅作为开发使用时推荐使用这种方法,因为所有用户的shell都有权使用这些环境变量,可能会给系统带来安全性问题. ·用文本编辑器打开/etc/profi ...