For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and its inverse is $$\bex \sex{\ba{cc} I&-A\\ 0&I \ea}. \eex$$ Use this to show that if $A,B$ are any two $n\times n$ matrices, then $$\bex \sex{\ba{cc} I&A\\ 0&I \ea}^{-1}\sex{\ba{cc} AB&0\\ B&0 \ea} \sex{\ba{cc} I&A\\ 0&I \ea}=\sex{\ba{cc} 0&0\\ B&BA \ea}. \eex$$ This implies that $AB$ and $BA$ have the same eigenvalues.(This last fact can be proved in another way as follows. If $B$ is invertible, then $AB=B^{-1}(BA)B$. So, $AB$ and $BA$ have the same eigenvalues. Since invertible matrices are dense in the space of matrices, and a general known fact in complex analysis is that the roots of a polynomial vary continuously with the coefficients, the above conclusion also holds in general.)

Solution. This follows from direct computations.

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. 后台启动mysql ,redis

    mysqld_safe --user=mysql & redis.conf daemonize no修改为daemonize yes

  2. Excel与SqlServer的导入导出问题总结

    1.Excel导入到SqlServer中,如果Excel里面的某一列,即有文本,又有数字,导入SqlServer中这一列的类型将会是float,Excel里面对应的文本值将导不进来,为null. 解决 ...

  3. js获取当前浏览器页面高度及宽度信息的方法

    var scrollLeft = Math.max(document.documentElement.scrollLeft, document.body.scrollLeft); var scroll ...

  4. Android Studio 单刷《第一行代码》系列 04 —— Activity 相关

    前情提要(Previously) 本系列将使用 Android Studio 将<第一行代码>(书中讲解案例使用Eclipse)刷一遍,旨在为想入坑 Android 开发,并选择 Andr ...

  5. linux驱动系列之ubuntu快捷键(转)

    Ubuntu快捷键-终端快捷键   1.关于终端的快捷键:    Tab:tab键是比较常用的一个快捷键,它的作用是补全文件名或者路径.举例 来说,输入”cd /ho”在按一下tab键,终端里就会显示 ...

  6. O2O模式

    O2O即Online To Offline(在线离线/线上到线下) 是指将线下的商务机会与互联网结合,让互联网成为线下交易的前台,这个概念最早来源于美国.O2O的概念非常广 泛,既可涉及到线上,又可涉 ...

  7. HDFS入门详解

    一. 前提和设计目标 1. 硬件错误是常态,因此需要冗余,这是深入到HDFS骨头里面去了 HDFS可能由成百上千的服务器所构成,每个服务器上存储着文件系统的部分数据.我们面对的现实是构成系统的组件数目 ...

  8. having——至少被订购过两回的订单

    此篇介绍having的用法 一.表:订单表,产品表 说明:订单表order ,包含prodectid 二.查询至少被订购过两回的订单 800x600 Normal 0 7.8 磅 0 2 false ...

  9. js根据id、pid把数据转为树结构

    //格式化树数据 function toTreeData(data) { var pos = {}; var tree = []; var i = 0; while (data.length != 0 ...

  10. [scalability] Find all documents that contain a list of words

    Given a list of millions of documents, how would you find all documents that contain a list of words ...