[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and its inverse is $$\bex \sex{\ba{cc} I&-A\\ 0&I \ea}. \eex$$ Use this to show that if $A,B$ are any two $n\times n$ matrices, then $$\bex \sex{\ba{cc} I&A\\ 0&I \ea}^{-1}\sex{\ba{cc} AB&0\\ B&0 \ea} \sex{\ba{cc} I&A\\ 0&I \ea}=\sex{\ba{cc} 0&0\\ B&BA \ea}. \eex$$ This implies that $AB$ and $BA$ have the same eigenvalues.(This last fact can be proved in another way as follows. If $B$ is invertible, then $AB=B^{-1}(BA)B$. So, $AB$ and $BA$ have the same eigenvalues. Since invertible matrices are dense in the space of matrices, and a general known fact in complex analysis is that the roots of a polynomial vary continuously with the coefficients, the above conclusion also holds in general.)
Solution. This follows from direct computations.
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- Begin Andriod -- 安装android开发环境
很久以前学过Andriod,现在已经忘的快没有了,重新捡起来练练,顺带写写博客,感受下写博的乐趣. 第一步:安装java jdk.jre(jdk:开发环境,jre:运行环境). (一)java jdk ...
- 自定义Angular指令与jQuery实现的Bootstrap风格数据双向绑定的单选&多选下拉框
先说点闲话,熟悉Angular的猿们会喜欢这个插件的. 00.本末倒置 不得不承认我是一个喜欢本末倒置的人,学生时代就喜欢先把晚交的作业先做,留着马上就要交的作业不做,然后慢悠悠做完不重要的作业,卧槽 ...
- Visual Studio 2013 之 Productivity Power Tools
http://blogs.msdn.com/b/visualstudio_cn/archive/2014/02/20/visual-studio-2013-productivity-power-too ...
- html5 Doctor——教你规范使用html5标签
学习地址(英文资料):http://html5doctor.com/ http://www.w3.org/html/wg/drafts/html/master/text-level-semantics ...
- Navicat for mysql 远程连接 mySql数据库10061、1045错误问题 (转)
远程使用Navicat for mysql 客户端软件连接 mySql数据时,连接出现 2003-Can’t connect to MySQL on ’192.168.1.2’(10061)错误时,是 ...
- Unity3D的几种坐标系
原地址:http://www.cnblogs.com/martianzone/p/3371789.html http://www.cnblogs.com/88999660/archive/2013/0 ...
- 发现一个可以在线运行JS代码的网站
平时可以在这里玩 http://jsbin.com/
- BZOJ 3747 POI2015 Kinoman
因为上午没有准备够题目,结果发现写完这道题没题可写了QAQ 又因为这道题范围是100w,我写了发线段树,以为要T,上午就花了一个小时拼命卡常数 结果下午一交居然过了QAQ 我们考虑枚举L,求最大R使得 ...
- js常用函数(不断添加中。。。)
/************************************************* Function: getColor Description: 根据输入的数字返回一个颜色值 In ...
- ANDROID_MARS学习笔记_S01_005CheckBox
一. 1.checkbox_layout.xml <?xml version="1.0" encoding="utf-8"?> <Linear ...