For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and its inverse is $$\bex \sex{\ba{cc} I&-A\\ 0&I \ea}. \eex$$ Use this to show that if $A,B$ are any two $n\times n$ matrices, then $$\bex \sex{\ba{cc} I&A\\ 0&I \ea}^{-1}\sex{\ba{cc} AB&0\\ B&0 \ea} \sex{\ba{cc} I&A\\ 0&I \ea}=\sex{\ba{cc} 0&0\\ B&BA \ea}. \eex$$ This implies that $AB$ and $BA$ have the same eigenvalues.(This last fact can be proved in another way as follows. If $B$ is invertible, then $AB=B^{-1}(BA)B$. So, $AB$ and $BA$ have the same eigenvalues. Since invertible matrices are dense in the space of matrices, and a general known fact in complex analysis is that the roots of a polynomial vary continuously with the coefficients, the above conclusion also holds in general.)

Solution. This follows from direct computations.

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. nginx低版本不支持pathinfo模式,thinkphp针对此问题的解决办法

    将一个thinkphp项目从apache环境移到nginx1.2上,怎奈,nginx这个版本默认不支持pathinfo模式 首先,编辑nginx的虚拟主机配置文件 location ~ .*.(php ...

  2. Java字符串之性能优化

    基础类型转化成String 在程序中你可能时常会需要将别的类型转化成String,有时候可能是一些基础类型的值.在拼接字符串的时候,如果你有两个或者多个基础类型的值需要放到前面,你需要显式的将第一个值 ...

  3. 【学习总结】整理一下int, NSInteger 等概念

    基本需要知道的 : unsigned : 没符号的 signed  : 有符号的 int : 整型 看看OC的定义 : #if __LP64__ || (TARGET_OS_EMBEDDED & ...

  4. iOS9下修改回HTTP模式进行网络请求

    升级为iOS9后,默认请求类型为https,如何使用http进行请求会报错 The resource could not be loaded because the App Transport Sec ...

  5. bnu 4358 左手定则 (搜索)

    http://www.bnuoj.com/bnuoj/problem_show.php?pid=4358 [题意]:给定起始位置和方向和目的地,按照左转.前进.右转.后退的优先级递减,也就是说能左转就 ...

  6. 实时数据处理环境搭建flume+kafka+storm:2.flume 安装

    1.  解压  tar -zxvf     2.配置       拷贝配置文件 :cp flume-conf.properties.template flume-conf.properties     ...

  7. play2 控制台打印乱码问题

    修改 play安装目录下,framework/build.bat java -Xms512M -Xmx1024M -Xss1M -XX:+CMSClassUnloadingEnabled -XX:Ma ...

  8. VS2012编译出来的程序,在XP上运行,出现“.exe 不是有效的 win32 应用程序” “not a valid win32 application”

    升级vs2010到vs2012,突然发现build出来的应用程序无法运行,提示“不是有效的 win32 应用程序” or “not a valid win32 application”. 参考CSDN ...

  9. 3.4 spring- lookup-method 子元素的使用与解析

    1. lookup-method的应用: 1.1 子元素lookup-method 似乎不是很常用,但是在某些时候他的确是非常有用的属性,通常我们称它为 "获取器注入" . 引用 ...

  10. (转)基于即时通信和LBS技术的位置感知服务(一):提出问题及解决方案

    一.前言.提出问题 公司最近举行2011年度创新设计大赛,快年底了正打算写写2010年以来Android开发的心得与经验,正好同事出了个点子:假如A和B两个人分别在不同的地点,能不能实现这样的功能,让 ...