Palindrome
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 55018   Accepted: 19024

Description

A palindrome is a symmetrical string, that is, a string read identically from left to right as well as from right to left. You are to write a program which, given a string, determines the minimal number of characters to be inserted into the string in order to obtain a palindrome.

As an example, by inserting 2 characters, the string "Ab3bd" can be transformed into a palindrome ("dAb3bAd" or "Adb3bdA"). However, inserting fewer than 2 characters does not produce a palindrome.

Input

Your program is to read from standard input. The first line contains one integer: the length of the input string N, 3 <= N <= 5000. The second line contains one string with length N. The string is formed from uppercase letters from 'A' to 'Z', lowercase letters from 'a' to 'z' and digits from '0' to '9'. Uppercase and lowercase letters are to be considered distinct.

Output

Your program is to write to standard output. The first line contains one integer, which is the desired minimal number.

Sample Input

5
Ab3bd

Sample Output

2

【题意】 给你一个长度为n的字符串,问最少再添多少字符能组成一个回文串;
【分析】
原字符串:Ab3bd
翻转后串:db3ba
二者有重复子串b3b,若想构成回文串,必须要再添加除重复子串外的其他字符。如:Adb3bdA 下面的问题就是求原字符串与翻转后串的最长公共子串,即LCS问题; 【LCS问题】
标记s1,s2字符位置变量i,j,令dp[i][j]为字符串s1[1~i],s2[1~j]的最长公共子串的长度;可知状态转移方程如下:
dp[i][j] = s1[i] == s2[j] ? dp[i-1][j-1] : max(dp[i-1][j], dp[i][j-1]); 【注意】
对于本题,n的范围是[3,5000],若直接开5000*5000的二维数组会内存超限(当然听说用short int会AC飘过); 【滚动数组】
滚动数组的作用在于优化空间。主要应用在递推或动态规划中(如01背包问题)。因为DP题目是一个自底向上的扩展过程,我们常常需要用到的是连续的解,前面的解往往可以舍去。所以用滚动数组优化是很有效的。利用滚动数组的话在n很大的情况下可以达到压缩存储的作用。 例如本题,dp[i][j]的值仅仅取决于dp[i-1][j-1], dp[i][j-1], dp[i-1][j];再直白地说,只需要保留下i-1时的状态,就可以求出i时的状态;所以dp完全可以只开一个2*5000的数组求解;
或许有人问j为什么不能也开成2? 这很好说明,因为j是随i不断循环的,i增加一个j全部循环一次,所以i在不断变化时需要不断j全部的信息,我们完全也可以令i随j不断变化,这样仅仅改变成5000*2,其他完全一样; 【代码】
 /*LCS*/

 #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
using namespace std;
const int maxn = ;
char s1[maxn], s2[maxn];
int n;
int dp[][maxn]; void LCS()
{
memset(dp, , sizeof(dp)); for(int i = ; i <= n; i++)
{
for(int j = ; j <= n; j++)
{
//cout << s1[i] << " " << s2[j] << endl;
if(s1[i] == s2[j])
dp[i%][j] = dp[(i-)%][j-]+;
else
dp[i%][j] = max(dp[(i-)%][j], dp[i%][j-]);
}
}
//cout << dp[n%2][n] << endl;
printf("%d\n", n-dp[n%][n]); } int main()
{
while(~scanf("%d", &n))
{
scanf("%s", s1+); for(int i = ; i < n; i++)
s2[i+] = s1[n-i]; LCS(); }
return ;
}

												

POJ 1159 - Palindrome (LCS, 滚动数组)的更多相关文章

  1. poj - 1159 - Palindrome(滚动数组dp)

    题意:一个长为N的字符串( 3 <= N <= 5000).问最少插入多少个字符使其变成回文串. 题目链接:http://poj.org/problem?id=1159 -->> ...

  2. POJ 1159 Palindrome(区间DP/最长公共子序列+滚动数组)

    Palindrome Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 56150   Accepted: 19398 Desc ...

  3. POJ 1159 Palindrome(字符串变回文:LCS)

    POJ 1159 Palindrome(字符串变回文:LCS) id=1159">http://poj.org/problem? id=1159 题意: 给你一个字符串, 问你做少须要 ...

  4. poj 1159 Palindrome 【LCS】

    任意门:http://poj.org/problem?id=1159 解题思路: LCS + 滚动数组 AC code: #include <cstdio> #include <io ...

  5. hdu 1513 && 1159 poj Palindrome (dp, 滚动数组, LCS)

    题目 以前做过的一道题, 今天又加了一种方法 整理了一下..... 题意:给出一个字符串,问要将这个字符串变成回文串要添加最少几个字符. 方法一: 将该字符串与其反转求一次LCS,然后所求就是n减去 ...

  6. LCS(滚动数组) POJ 1159 Palindrome

    题目传送门 题意:一个字符串要变成回文串至少要插入多少个字符 分析:LCS,长度 - 原串和反串的最大相同长度就是要插入的个数.解释一下,当和反串相同时,在原串中已经是回文的部分了,那么减去LCS长度 ...

  7. HDU 1513 && POJ 1159 Palindrome (DP+LCS+滚动数组)

    题意:给定一个字符串,让你把它变成回文串,求添加最少的字符数. 析:动态规划是很明显的,就是没有了现思路,还是问的别人才知道,哦,原来要么写,既然是回文串, 那么最后正反都得是一样的,所以我们就正反求 ...

  8. 动态规划+滚动数组 -- POJ 1159 Palindrome

    给一字符串,问最少加几个字符能够让它成为回文串. 比方 Ab3bd 最少须要两个字符能够成为回文串 dAb3bAd 思路: 动态规划 DP[i][j] 意味着从 i 到 j 这段字符变为回文串最少要几 ...

  9. POJ 1159 回文LCS滚动数组优化

    详细解题报告可以看这个PPT 这题如果是直接开int 5000 * 5000  的空间肯定会MLE,优化方法是采用滚动数组. 原LCS转移方程 : dp[i][j] = dp[i - 1][j] + ...

随机推荐

  1. CF#190DIV.1

    /* CF#190DIV.1-C 题意:给你n个结点的树,给这些结点标记字母AB..Z,对于标记相同的结点路径上 的结点的标记必须有一个是大于该标记的:问是否可以标记(A是最大标记) 分析:整天思路就 ...

  2. Spring properties dependency checking

    In Spring,you can use dependency checking feature to make sure the required properties have been set ...

  3. PID参数整定快速入门(调节器参数整定方法)

    PID调节器参数整定方法很多,常见的工程整定方法有临界比例度法.衰减曲线法和经验法.云润仪表以图文形式分别介绍调节器参数整定方法. 临界比例度法一个调节系统,在阶跃干扰作用下,出现既不发散也不衰减的等 ...

  4. 转载 JQuery.data()方法学习

    转载原地址  http://hanchaohan.blog.51cto.com/2996417/1271551 转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.ht ...

  5. Unity3D之空间转换学习笔记(一):场景物体变换

    该系列笔记基于Unity3D 5.x的版本学习,部分API使用和4.x不一致. 目前在Unity3D中,除了新的UGUI部分控件外,所有的物体(GameObject)都必带有Transform组件,而 ...

  6. 解决iPhone上select时常失去焦点,随意跳到下一个输入框,影响用户操作

    window.addEventListener('load', function() { FastClick.attach(document.body); }, false); //300s延迟,解决 ...

  7. ASP导出Word带页眉页脚,中文不乱码

    关键代码: <% Response.Clear() Response.CodePage= Response.Charset="UTF-8" Response.ContentT ...

  8. [置顶] a+=1/a=+1/a-=1区别-c语言

    1.解释 a+=1/a=+1/a-=1 含义 a+=1 实质等于 a += 1,也就是等于 a = a + 1: a=+1 实质等于 a = +1:[因为运算符中没有=+,很多人误以为是 a =+ 1 ...

  9. Android布局优化之include、merge、ViewStub的使用

    本文针对include.merge.ViewStub三个标签如何在布局复用.有效减少布局层级以及如何可以按需加载三个方面进行介绍的. 复用布局可以帮助我们创建一些可以重复使用的复杂布局.这种方式也意味 ...

  10. android139 360 黑名单 增删改查-数据库操作

    BlackNumberOpenHelper.java package com.itheima52.mobilesafe.db.dao; import android.content.Context; ...