Quantifying Hacker News

I thought it would be fun to analyze the activity on one of my favorite sources of interesting links and information, Hacker News. My source of data is a script I've set up some time in August that downloads HN (the Front page and the New stories page) every minute. We will be interested in visualizing the stories as they get upvoted during the day, figuring out which domains/users are most popular, what topics are most popular, and the best time to post a story. I'm making all my data and code (Python data collection scripts + IPython Notebook for analysis) available in case you'd like to carry out a similar analysis.

Data collection protocol

I set up a very simple python script that scrapes the HN front page and the new stories page every minute. A single day of data begins at 4am (PST) and ends at 4am the next day. The .html files are saved compressed as gzipped pickles and one day occupies roughly 10mb in this format. I had bring down my machine for a few days a few times so there are some gaps in the data, but in the end we get 47 days of data from period between August 22 and October 30.

Raw HTML data parsing

The parsing Python script uses BeautifulSoup to convert the raw HTML into a more structured JSON. This script was by the way by no means simple to write -- HN is based on unstructured tables and I had to discover many strange edge cases in its behavior along the way. At the end I ended up with a 100-line ugliest-parsing-function-ever (really, I'm not proud of it) but it works and outputs something like the following for a single story at a specific snapshot:

{
'domain': u'play.google.com', 'title': u'Nexus 5',
'url': u'https://play.google.com/store/devices/details?id=nexus_5_black_16gb',
'num_comments': 42, 'rank': 1, 'points': 65,
'user': u'sonier', 'minutes_ago': 39, 'id': u'6648519'
}

We get 60 such entries every minute (30 for front page and 30 for new page) and these are again all saved to disk. We are now ready to bring out the IPython Notebook and get to the juicy analysis!

The Analysis: Detailed analysis

Head over to the IPython Notebook rendered as HTML for the analysis:

Note: I had the entire dataset and .ipynb Ipython Notebook source available for download but recently took it down to save space on my host (sorry).

from: http://karpathy.github.io/2013/11/27/quantifying-hacker-news/

量化Hacker News 中50天的数据 Quantifying Hacker News with 50 days of data的更多相关文章

  1. Hi3559AV100 NNIE开发(5)mobilefacenet.wk仿真成功量化及与CNN_convert_bin_and_print_featuremap.py输出中间层数据对比过程

    前面随笔给出了NNIE开发的基本知识,下面几篇随笔将着重于Mobilefacenet NNIE开发,实现mobilefacenet.wk的chip版本,并在Hi3559AV100上实现mobilefa ...

  2. 分享一个SQLSERVER脚本(计算数据库中各个表的数据量和每行记录所占用空间)

    分享一个SQLSERVER脚本(计算数据库中各个表的数据量和每行记录所占用空间) 很多时候我们都需要计算数据库中各个表的数据量和每行记录所占用空间 这里共享一个脚本 CREATE TABLE #tab ...

  3. for循环往Oracle中插入n条数据,主键自增

    1.主键自增实现方法:http://www.cnblogs.com/Donnnnnn/p/5959871.html 2.for循环往Oracle中插入n条数据 BEGIN .. loop insert ...

  4. 转:SQL SERVER数据库中实现快速的数据提取和数据分页

    探讨如何在有着1000万条数据的MS SQL SERVER数据库中实现快速的数据提取和数据分页.以下代码说明了我们实例中数据库的“红头文件”一表的部分数据结构: CREATE TABLE [dbo]. ...

  5. SQL Server 2008中新增的变更数据捕获(CDC)和更改跟踪

    来源:http://www.cnblogs.com/downmoon/archive/2012/04/10/2439462.html  本文主要介绍SQL Server中记录数据变更的四个方法:触发器 ...

  6. 在JSP页面中输出JSON格式数据

    JSON-taglib是一套使在JSP页面中输出JSON格式数据的标签库. JSON-taglib主页: http://json-taglib.sourceforge.net/index.html J ...

  7. (转)分享一个SQLSERVER脚本(计算数据库中各个表的数据量和每行记录所占用空间)

    分享一个SQLSERVER脚本(计算数据库中各个表的数据量和每行记录所占用空间) 很多时候我们都需要计算数据库中各个表的数据量和每行记录所占用空间 这里共享一个脚本 CREATE TABLE #tab ...

  8. Android编程中的5种数据存储方式

    Android编程中的5种数据存储方式 作者:牛奶.不加糖 字体:[增加 减小] 类型:转载 时间:2015-12-03我要评论 这篇文章主要介绍了Android编程中的5种数据存储方式,结合实例形式 ...

  9. 另类爬虫:从PDF文件中爬取表格数据

    简介   本文将展示一个稍微不一样点的爬虫.   以往我们的爬虫都是从网络上爬取数据,因为网页一般用HTML,CSS,JavaScript代码写成,因此,有大量成熟的技术来爬取网页中的各种数据.这次, ...

随机推荐

  1. nodejs是单线程

    你不妨先思考一个问题:在单核时代,PHP之类多线程或者多进程的,是怎么处理并发的?是排队吗? 答案是:的确就是排队.但是并不是一定要处理完请求1才能去处理请求2:实际上请求的处理过程中,有很多的时间是 ...

  2. 修改myeclipse的jsp模板

    在myeclipse的安装目录下: C:\Users\Seeker\AppData\Local\MyEclipse Professional\plugins 找到com.genuitec.eclips ...

  3. div+css登陆界面案例

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. NodeJS - Express 4.0下使用app.dynamicHelpers错误

    在NodeJS - Express 4.0下使用app.dynamicHelpers发生错误: app.dynamicHelpers({ ^ TypeError: Object function (r ...

  5. 主成分分析(principal components analysis, PCA)——无监督学习

    降维的两种方式: (1)特征选择(feature selection),通过变量选择来缩减维数. (2)特征提取(feature extraction),通过线性或非线性变换(投影)来生成缩减集(复合 ...

  6. C#系统缓存全解析

    原文:http://blog.csdn.net/wyxhd2008/article/details/8076105 目录(?)[-] 系统缓存的概述 页面输出缓存 页面局部缓存 文件缓存依赖 数据库缓 ...

  7. BOM-字节序标记

    BOM——Byte Order Mark 字节序标记 首先是什么是字节序? 字节序:与二进制数据在机器存放位置相关的! 可分为两类: 1. 小端字节序: 低地址放低位数据. x86系列的计算机就使用这 ...

  8. c++ uuid生成法则

    http://www.jb51.net/LINUXjishu/39614.html CentOS #include <uuid/uuid.h> 找不到文件解决方法: sudo yum in ...

  9. 【BZOJ】【2940】【POI2000】条纹

    博弈论 一开始想成S-Nim了……后来发现不一样= =石子是一定得取的,但是这个铺条纹就像Crosses and Crosses一样,是可以铺到中间,左右留下空隙但是对手无处可放的…… 所以就是两道题 ...

  10. ffmpeg参数解释

    基本选项: -formats 输出所有可用格式 -f fmt 指定格式(音频或视频格式) -i filename 指定输入文件名,在linux下当然也能指定: 0.0(屏幕录制)或摄像头 -y 覆盖已 ...