// 筛选法
// 先求出 sqrt(1<<31)内的素数
// 然后筛选出符合要求的数
// 详情见代码注释
// #pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
#include <math.h>
#include <stdio.h>
#include <string.h>
using namespace std;
#define MOD 1000000007
#define maxn 1000010
#define maxm 48010
#define LL long long
int pr[maxm];
int p;
void getP(){
int i,j;
for(i=;i<maxm;i+=)
pr[i]=;
for(i=;i*i<maxm;i+=)
if(!pr[i])
for(j=i*i;j<maxm;j+=i)
pr[j]=;
pr[p++]=; // printf("%d ",p);
for(i=;i<maxm;i+=)
if(!pr[i]) pr[p++]=i;//,printf("%d ",i);
}
int fac[maxn],f[maxn],lt[maxn];
int main(){
getP();
int T;
int A,B;
LL tp;
scanf("%d",&T);
int i;
LL j,k;
while(T--){
scanf("%d %d",&A,&B);
LL len=B-A;
for(i=;i<=len;i++) fac[i]=,f[i]=false,lt[i]=A+i;
tp=;
for(i=;i<p;i++){ // 素数从 3 开始 因为偶数时不可能符合要求的
tp=tp*pr[i]*pr[i];
if(tp>B) break;
for(j=(A-+pr[i])/pr[i];j*pr[i]<=B;j++)
{
k=j*pr[i];
if(j%pr[i]==) f[k-A]=true;// 去掉 平方因子
if((j*pr[i]-)%(pr[i]-)!=) f[k-A]=true; // 条件3
fac[k-A]++; // 条件 2
lt[k-A]=lt[k-A]/pr[i];可能出现比sqrt(1<<31)大的素因子,所以需要知道
}
tp=;
}
int ans=;
for(i=;i<=len;i++)// 这里就写的比较繁杂了 就是各种情况讨论
if(!f[i]){
if(fac[i]==&&lt[i]>){
tp=i+A;
if((tp-)%(lt[i]-)==)
ans++;
}else if(fac[i]>){
tp=i+A;
if(lt[i]==) ans++;
else
if((tp-)%(lt[i]-)==)
ans++;
}
}
printf("%d\n",ans);
}
}

uestc 1725 吴神数的更多相关文章

  1. uestc 1722 吴神的表白

    // 这题做的我好难过 不是因为没有思路 而是因为超数据类型范围的事// ax+by=c a,b,c>0// 那么该直线经过 1 2 4三个象限// 2 4 象限的第一整数解肯定是该象限最优解/ ...

  2. uestc 1721 吴神,人类的希望

    // 将n个相同的球放进m个盒子 盒子不为空的方法总数// dp[i][j] 表示i个盒子 j个球的方法总数// 递推关系 dp[i][j]=dp[i-1][j-1]+d[i][j-i]// a. i ...

  3. CPC23-4-K. 喵喵的神数 (数论 Lucas定理)

    喵喵的神∙数 Time Limit: 1 Sec Memory Limit: 128 MB Description 喵喵对组合数比較感兴趣,而且对计算组合数很在行. 同一时候为了追求有后宫的素养的生活 ...

  4. UESTC cdoj 619 吴神,人类的希望 (组合数学)

    枚举盒子的个数,先把总数n减去掉box*k保证每个盒子至少有k个小球,剩下的小球放入盒子中可以为空, 加入box个小球保证每个盒子至少有一个小球,问题转化成不可区分小球放入不可区分盒子非空的方案数. ...

  5. UESTC - 1168 凤神与狗

    原题链接 凤神隐居山林,与猫狗为伴.起初,他拥有cc只猫和dd只狗.每天下午他随机从中选择一只出去游玩并且晚上归来.如果他带的是狗,则第二天早上狗的数量增加ww只,否则,猫的数量增加ww只.由于凤神特 ...

  6. CPC23-4 K.喵喵的神·数

    题意:给出整数T,P,求c(T,P) mod P. 解法:用卢卡斯定理. 卢卡斯定理:解决c(n,m) mod p问题.Lucas(n,m,p)=c(n%p,m%p)*Lucas(n/p,m/p,p) ...

  7. 盐城5138.6118(薇)xiaojie:盐城哪里有xiaomei

    盐城哪里有小姐服务大保健[微信:5138.6118倩儿小妹[盐城叫小姐服务√o服务微信:5138.6118倩儿小妹[盐城叫小姐服务][十微信:5138.6118倩儿小妹][盐城叫小姐包夜服务][十微信 ...

  8. 没有我的A协

    我离开A协(北京林业大学ACM爱好者协会)有段时间了,严格算来,应该有4年了.现在协会里的大部分人我都不认识.A协在我离开之后的这段时间里也产生了翻天覆地的变化. A协已经不只是一个以竞赛培训为目的的 ...

  9. 第八届郑州轻工业学院ACM(程序设计大赛)校内预选赛

    郑州轻工业学院有一个大赛,把几个有趣的题目分享一下.下面是题目连接,喜欢了就点点... 斗破苍穹 礼上往来 统计人数 神の数 炉石传说 Mathematics and Geometry 马拉松后记 斗 ...

随机推荐

  1. 【Entity Framework】 Entity Framework资料汇总

    Fluent API : http://social.msdn.microsoft.com/Search/zh-CN?query=Fluent%20API&Refinement=95& ...

  2. POJ 2299 Ultra-QuickSort (排序+数据离散化+求顺序数)

    题意:给出一个序列,求至少需要用到多少次操作,才能将序列从小到大排序. 思路: 数据量很大,n<500000,所以用冒泡模拟是超时的. 接下来就想到了求顺序数,总共需要交换的次数为每个数后面有多 ...

  3. [PHP]如何在百度(BAE)和新浪(SAE)的云平台使用PHP连接MySQL并返回结果数据

    <?php $dbname = 'VnOTxPFWoxzUBLtrQCCg'; $host = getenv('HTTP_BAE_ENV_ADDR_SQL_IP'); $port = geten ...

  4. Win7 下硬盘安装Linux Mint 17

    下载Linux Mint 17镜像,放到C盘根目录:解压出mint.iso文件中casper目录下的vmliunz和initrd.lz两个文件,同样放在C盘的根目录里. 在Win7上安装EasyBCD ...

  5. JavaWeb项目开发案例精粹-第2章投票系统-002配置文件及公共类

    1. <?xml version="1.0" encoding="UTF-8"?> <web-app version="2.5&qu ...

  6. C++:对象的赋值和复制

    3.6.1 对象赋值语句 如同基本类型赋值语句一样,同类型的对象之间也可以进行赋值,即一个对象的值可以赋给另一个对象.这里所指的对象的赋值是指对其中的数据成员赋值,而不对成员函数赋值.例如:A和B是同 ...

  7. Sqlmap基础(一)

    (1)选项:-r REQUESTFILE      Load HTTP request from a file (2)选项:--current-db        Retrieve DBMS curr ...

  8. C#语句及案例

    今天学习了,C#语句部分的分支语句,差点转不过弯来. 语句分类: 1.顺序语句 2.选择语句(分支语句) 3.循环语句 分支语句 (一)if(){} ; 按照顺序哪个if条件适合,执行哪个. 不合适就 ...

  9. NDK(20)JNI的5大性能缺陷及优化技巧

    转自 : http://www.ibm.com/developerworks/cn/java/j-jni/index.html JNI 编程缺陷可以分为两类: 性能:代码能执行所设计的功能,但运行缓慢 ...

  10. cmd打开git

    一旦你的git安装成功,而且在安装是没有选择可以使用cmd黑窗口来打开,那么你再来设置会很麻烦,我表示不会. 今天分享下同事分享给我的一个不错的方法. 这个方法依赖一个 Dos 文件(.bat文件), ...