定理. $$\bex \int_0^1\frac{\ln^2x}{x^x}\rd x<2\int_0^1 \frac{\rd x}{x^x}. \eex$$

证明: 由分部积分及 Fubini 定理, $$\beex \bea \int_0^1 x^m\ln^nx\rd x&=\frac{(-1)^nn!}{(m+1)^{n+1}},\\ \int_0^1 \frac{\ln^2x}{x^x}\rd x &=\int_0^1 e^{-x\ln x} \ln^2x \rd x =\int_0^1\sum_{k=0}^\infty \frac{(-1)^k}{k!} x^k\ln^{k+2}x\rd x\\ &=\sum_{k=0}^\infty \frac{(-1)^k}{k!}\int_0^1 x^k\ln^{k+2}\rd x =\sum_{k=0}^\infty \frac{k+2}{(k+1)^{k+2}},\\ \int_0^1 \frac{\rd x}{x^x}&=\sum_{k=0}^\infty \frac{1}{(k+1)^{k+1}},\\ k+2&<2(k+1),\ (k>0). \eea \eeex$$ 而有结论成立.

2015年7月5号

张祖锦 赣南师范学院数学与计算机科学学院 邮箱: zhangzujin361@163.com

[数学笔记Mathematical Notes]2-一个带对数的积分不等式的更多相关文章

  1. [数学笔记Mathematical Notes]目录

    2.也许是一个问题,暂时没给出解答. 2015年7月5日 1. 这个一个笔记类型的数学杂志, 打算用来记录自己学数学时做的笔记,一般几页纸一期. 觉得有意思就摘抄下来,或者自己的感想. 可能有些不是原 ...

  2. [数学笔记Mathematical Notes]1-调和级数发散的一个简单证明

    定理. 调和级数 $\dps{\vsm{n}\frac{1}{n}}$ 是发散的. 证明. 设 $$\bex a_n=\sum_{k=1}^n\frac{1}{k}, \eex$$ 则 $a_n$ 递 ...

  3. Unity3D学习笔记2——绘制一个带纹理的面

    目录 1. 概述 2. 详论 2.1. 网格(Mesh) 2.1.1. 顶点 2.1.2. 顶点索引 2.2. 材质(Material) 2.2.1. 创建材质 2.2.2. 使用材质 2.3. 光照 ...

  4. NVIDIA CG语言 函数之所有数学类函数(Mathematical Functions)

    数学类函数(Mathematical Functions) abs(x) 返回标量和向量x的绝对值 如果x是向量,则返回每一个成员的绝对值 acos(x) 返回标量和向量x的反余弦 x的范围是[-1, ...

  5. 思考的乐趣----matrix67数学笔记:最精妙的无字证明

    从<思考的乐趣----matrix67数学笔记>一书中看到这个证明,据说在mathoverflow网站上这个无字证明获得了最多的投票! http://mathoverflow.net/qu ...

  6. AI与数学笔记之深入浅出的讲解傅里叶变换(真正的通俗易懂)

    原文出处: 韩昊    # 作 者:韩 昊 # 知 乎:Heinrich # 微 博:@花生油工人 # 知乎专栏:与时间无关的故事 # 谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张 ...

  7. 创建一个带模版的用户控件 V.3

    再重构此篇<创建一个带模版的用户控件  V.2>http://www.cnblogs.com/insus/p/4164149.html 让其它动态实现header,Item和Footer. ...

  8. 创建一个带模版的用户控件 V.2

    前面有做练习<创建一个带模版的用户控件>http://www.cnblogs.com/insus/p/4161544.html .过于简化.通常使用数据控件Repeater会有网页写好He ...

  9. Android(java)学习笔记219:开发一个多界面的应用程序之两种意图

    1.两种意图: (1)显式意图: 在代码里面用intent设置要开启Activity的字节码.class文件: (2)隐式意图: Android(java)学习笔记218:开发一个多界面的应用程序之人 ...

随机推荐

  1. SSRS----关于图表参考线(平均线)的添加

    在开发报表的时候,遇到了一个问题,客户需要在气泡图上添加水平和竖直两条平均线(结果参考如下图). 个人知识背景 一般添加参考线本身是有一个相关的设置的,但一般都是相对于Y值,即平行于X轴的.用类似的方 ...

  2. Redis管道和发布订阅

    管道:原子性执行命令 ''' redis-py默认在执行每次请求都会创建(连接池申请连接)和断开(归还连接池)一次连接操作, 如果想要在一次请求中指定多个命令,则可以使用pipline实现一次请求指定 ...

  3. HBase 是列式存储数据库吗

    在介绍 HBase 是不是列式存储数据库之前,我们先来了解一下什么是行式数据库和列式数据库. 行式数据库和列式数据库 在维基百科里面,对行式数据库和列式数据库的定义为:列式数据库是以列相关存储架构进行 ...

  4. SpringCloud 学习网址记录

    SpringCloud Gateway https://www.cnblogs.com/ityouknow/p/10141740.html 熔断降级的概念 https://blog.csdn.net/ ...

  5. Linux:Day13(下) GRUB

    GRUB(Boot Loader): grub:GRand Unified Bootloader grub 0.x:grub legacy grub 1.x:grub2 grub legacy: st ...

  6. linux 网卡的混杂模式的取消

    1.Linux下网卡常用的几种模式说明: 广播方式:该模式下的网卡能够接收网络中的广播信息. 组播方式:设置在该模式下的网卡能够接收组播数据. 直接方式:在这种模式下,只有目的网卡才能接收该数据. 混 ...

  7. 路由信息对象Route之属性query和params的区别

    query的使用 第一步:在<router-link/>标签中配置如下 <router-link :to="{name:'beijing',query:{id:1,user ...

  8. 玩转PIL库

    1.安装pillow库: 在cmd下,输入简单的命令: pip install pillow  即可安装pillow库. 2.PIL库的简介: 1. PIL库主要有2个方面的功能: (1) 图像归档: ...

  9. Photoshop调出清晰的阴雨天气山水风景照

    既然我们前期拍摄到了一张效果还不错的照片,那么下一步就是通过后期处理得到最终的影像. 在处理之前,我们一定要做到胸有成竹,而不是盲目调整. 也就是说在还没调整照片的时候,就要计划和预想到最终的照片应该 ...

  10. nginx编译文件配置(原)

    1.在根目录的opt下创建文件夹software并wget一个nginx包进行解压,/opt/software/,解压后需要对软件包文件进行授权 2.cd到nginx目录输入id nginx 未安装插 ...