定理. $$\bex \int_0^1\frac{\ln^2x}{x^x}\rd x<2\int_0^1 \frac{\rd x}{x^x}. \eex$$

证明: 由分部积分及 Fubini 定理, $$\beex \bea \int_0^1 x^m\ln^nx\rd x&=\frac{(-1)^nn!}{(m+1)^{n+1}},\\ \int_0^1 \frac{\ln^2x}{x^x}\rd x &=\int_0^1 e^{-x\ln x} \ln^2x \rd x =\int_0^1\sum_{k=0}^\infty \frac{(-1)^k}{k!} x^k\ln^{k+2}x\rd x\\ &=\sum_{k=0}^\infty \frac{(-1)^k}{k!}\int_0^1 x^k\ln^{k+2}\rd x =\sum_{k=0}^\infty \frac{k+2}{(k+1)^{k+2}},\\ \int_0^1 \frac{\rd x}{x^x}&=\sum_{k=0}^\infty \frac{1}{(k+1)^{k+1}},\\ k+2&<2(k+1),\ (k>0). \eea \eeex$$ 而有结论成立.

2015年7月5号

张祖锦 赣南师范学院数学与计算机科学学院 邮箱: zhangzujin361@163.com

[数学笔记Mathematical Notes]2-一个带对数的积分不等式的更多相关文章

  1. [数学笔记Mathematical Notes]目录

    2.也许是一个问题,暂时没给出解答. 2015年7月5日 1. 这个一个笔记类型的数学杂志, 打算用来记录自己学数学时做的笔记,一般几页纸一期. 觉得有意思就摘抄下来,或者自己的感想. 可能有些不是原 ...

  2. [数学笔记Mathematical Notes]1-调和级数发散的一个简单证明

    定理. 调和级数 $\dps{\vsm{n}\frac{1}{n}}$ 是发散的. 证明. 设 $$\bex a_n=\sum_{k=1}^n\frac{1}{k}, \eex$$ 则 $a_n$ 递 ...

  3. Unity3D学习笔记2——绘制一个带纹理的面

    目录 1. 概述 2. 详论 2.1. 网格(Mesh) 2.1.1. 顶点 2.1.2. 顶点索引 2.2. 材质(Material) 2.2.1. 创建材质 2.2.2. 使用材质 2.3. 光照 ...

  4. NVIDIA CG语言 函数之所有数学类函数(Mathematical Functions)

    数学类函数(Mathematical Functions) abs(x) 返回标量和向量x的绝对值 如果x是向量,则返回每一个成员的绝对值 acos(x) 返回标量和向量x的反余弦 x的范围是[-1, ...

  5. 思考的乐趣----matrix67数学笔记:最精妙的无字证明

    从<思考的乐趣----matrix67数学笔记>一书中看到这个证明,据说在mathoverflow网站上这个无字证明获得了最多的投票! http://mathoverflow.net/qu ...

  6. AI与数学笔记之深入浅出的讲解傅里叶变换(真正的通俗易懂)

    原文出处: 韩昊    # 作 者:韩 昊 # 知 乎:Heinrich # 微 博:@花生油工人 # 知乎专栏:与时间无关的故事 # 谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张 ...

  7. 创建一个带模版的用户控件 V.3

    再重构此篇<创建一个带模版的用户控件  V.2>http://www.cnblogs.com/insus/p/4164149.html 让其它动态实现header,Item和Footer. ...

  8. 创建一个带模版的用户控件 V.2

    前面有做练习<创建一个带模版的用户控件>http://www.cnblogs.com/insus/p/4161544.html .过于简化.通常使用数据控件Repeater会有网页写好He ...

  9. Android(java)学习笔记219:开发一个多界面的应用程序之两种意图

    1.两种意图: (1)显式意图: 在代码里面用intent设置要开启Activity的字节码.class文件: (2)隐式意图: Android(java)学习笔记218:开发一个多界面的应用程序之人 ...

随机推荐

  1. 虚拟机配置Linux上网环境

    概要:在虚拟机安装CentOS6.5的环境后,配置NAT模式,修改系统文件支持上网. (1)ip地址的配置,IP地址的子网掩码为255.255.255.0. (2)网关的指定,也就是默认路由,当我们需 ...

  2. 【Teradata SQL】创建数据库和表

    1.数据库perm大小为10G Create database testbase as perm=10E9,spool=10E9; 2.创建物理表 create multiset table stg( ...

  3. qemu 系列

    一.. qemu uboot 1. 首先安装交叉编译器,执行: sudo apt-get install gcc-arm-linux-gnueabi        2. 下载U-Boot源文件: ht ...

  4. kubernetes-核心资源之Ingress

    1.Ingress 在Kubernetes中,服务和Pod的IP地址仅可以在集群网络内部使用,对于集群外的应用是不可见的.为了使外部的应用能够访问集群内的服务,在Kubernetes中可以通过Node ...

  5. 文本分类实战(三)—— charCNN模型

    1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...

  6. Grunt自动化构建环境搭建

    1.环境准备 需要安装Git.Node.Bower.Grunt.Ruby NodeJS https://nodejs.org/en/ Ruby    http://rubyinstaller.org/ ...

  7. SqlServer2008_r2安装功能选择

    勾上数据引擎服务.客户端工具链接.sdk.管理工具.客户连接SDK.最后一个 sql2008安装时,怎么选择服务账户NT Authority\System ,系统内置账号,对本地系统拥有完全控制权限: ...

  8. MySQL源码包编译安装

    +++++++++++++++++++++++++++++++++++++++++++标题:MySQL数据库实力部署时间:2019年3月9日内容:MySQL源码包进行编译,然后部署MySQL单实例重点 ...

  9. jquery实现点击控制div的显示和隐藏

    我们使用点击显示.点击隐藏的时候,一般有两种可选方案 .示例 html <div class="index"> <h1> 首页 </h1> &l ...

  10. static与final区别

    1. final   final类不能被继承,没有子类,final类中的方法默认是final的 final方法不能被子类的方法复盖,但可以被继承 final成员变量表示常量,只能被赋值一次,赋值后不能 ...