算法简介

算法实现

我只是简单处理了一下图像的灰度值,如果要处理RGB值的话,就需要分别进行SVD分解,最后再合起来即可。

 import numpy as np
from PIL import Image
import matplotlib.pyplot as plt def picture_processing(file): # 图像处理,返回灰度值
im = Image.open(file)
im = im.convert('L') # 转换为灰度图
#im.save('original_' + file) # 保存图片
w, h = im.size
data = np.zeros((h, w))
for i in range(w): # 得到灰度值矩阵
for j in range(h):
data[j][i] = im.getpixel((i, j))
return data def picture_restore(U, Sigma, VT, k): # 图像恢复,k为选取的奇异值个数
sig = np.eye(k) * Sigma[:k]
new_pic = U[:, :k].dot(sig).dot(VT[:k, :]) # 重构图片
new_size = U.shape[0] * k + sig.size + k * VT.shape[1] # 计算SVD图片所需大小
#new_im = Image.fromarray(new_pic.astype(np.uint8)) # 保存图片
#new_im.save('pic_' + str(k) + '.jpeg')
return new_pic, new_size if __name__ == '__main__':
file = 'pic.jpeg'
data = picture_processing(file)
U, Sigma, VT = np.linalg.svd(data) pic_list, size_list = [], [] #图片列表,图片大小列表
k_list = [1, 10, 50, 100, 300]
for k in k_list:
new_pic, new_size = picture_restore(U, Sigma, VT, k)
pic_list.append(new_pic)
size_list.append(new_size) fig, ax = plt.subplots(2, 3) # 展示
ax[0][0].imshow(data)
ax[0][0].set_title('original picture——size:%d' % data.size)
for i in range(len(k_list)):
ax[int((i+1) / 3)][int((i+1) % 3)].imshow(pic_list[i])
ax[int((i+1) / 3)][int((i+1) % 3)].set_title('k = %d——size:%d' % (k_list[i], size_list[i]))
plt.show()

运行结果

基于SVD的图像压缩的更多相关文章

  1. 基于SVD的推荐算法

    首先每行减去每列的均值,然后svd分解,得到USV,然后US代表用户矩阵u,SV代表项目矩阵v,那么预测评分为用户均值加上uv. 降维方法扩展性好,不过降维导致信息损失,而且与数据及相关,高维情况下效 ...

  2. 利用奇异值分解(SVD)进行图像压缩-python实现

    首先要声明,图片的算法有很多,如JPEG算法,SVD对图片的压缩可能并不是最佳选择,这里主要说明SVD可以降维 相对于PAC(主成分分析),SVD(奇异值分解)对数据的列和行都进行了降维,左奇异矩阵可 ...

  3. 机器学习实战(Machine Learning in Action)学习笔记————10.奇异值分解(SVD)原理、基于协同过滤的推荐引擎、数据降维

    关键字:SVD.奇异值分解.降维.基于协同过滤的推荐引擎作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harr ...

  4. 利用奇异值分解(SVD)简化数据

    特征值与特征向量 下面这部分内容摘自:强大的矩阵奇异值分解(SVD)及其应用 特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法.两者有着很紧密的关系,在接下来会谈到,特征值分解和奇异值分解的 ...

  5. 【机器学习实战】第14章 利用SVD简化数据

    第14章 利用SVD简化数据 SVD 概述 奇异值分解(SVD, Singular Value Decomposition): 提取信息的一种方法,可以把 SVD 看成是从噪声数据中抽取相关特征.从生 ...

  6. 一步步教你轻松学奇异值分解SVD降维算法

    一步步教你轻松学奇异值分解SVD降维算法 (白宁超 2018年10月24日09:04:56 ) 摘要:奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分 ...

  7. SVD简化数据

    一,引言 我们知道,在实际生活中,采集到的数据大部分信息都是无用的噪声和冗余信息,那么,我们如何才能剔除掉这些噪声和无用的信息,只保留包含绝大部分重要信息的数据特征呢? 除了上次降到的PCA方法,本次 ...

  8. 机器学习实战 [Machine learning in action]

    内容简介 机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中萃取有价值的信息或模式,成为各行业求生存.谋发展的决定性手段,这使得这一过去为分析师和数学家所专属 ...

  9. 奇异值分解(SVD)和简单图像压缩

    SVD(Singular Value Decomposition,奇异值分解) 算法优缺点: 优点:简化数据,去除噪声,提高算法结果 缺点:数据的转换可能难于理解 适用数据类型:数值型数据 算法思想: ...

随机推荐

  1. 【Linux】Mac Centos install VMware Tools

    can't use yum: vi /etc/sysconfig/network-scripts/ifcfg-enp4s0 yum -y install lshw pciutils gdisk sys ...

  2. TCP 服务端接收数据解析工具类

    package com.ivchat.common.util; import java.io.BufferedReader;import java.io.IOException;import java ...

  3. 5分钟安装 关于win10安装composer PHP 用来管理依赖(dependency)关系的工具

    1.在你的phpstudy或者wamp中开启extension=php_openssl.dll扩展 (php配置文件)并配置好php的环境变量 2.在与你安装phpstudy和wamp不一样的盘中创建 ...

  4. PAT (Basic Level) Practice (中文)1023 组个最小数

    1023 组个最小数 给定数字 0-9 各若干个.你可以以任意顺序排列这些数字,但必须全部使用.目标是使得最后得到的数尽可能小(注意 0 不能做首位).例如:给定两个 0,两个 1,三个 5,一个 8 ...

  5. 漫谈GUI开发—各种平台UI开发概况

    前言: 在看这边文章前,可以建议看下:图形界面操作系统发展史——计算机界面发展历史回顾 从CS到BS,现在的前端开发,其实也是GUI开发范畴.现今 各平台的UI开发概况 HTML&CSS,Wi ...

  6. 极致21点开发DAY4

    完成的内容:1.修改上一篇博文中的Bug  2.完成任务窗口逻辑 using System; using System.Collections.Generic; using UnityEngine; ...

  7. intellij idea 官方帮助文档翻译(前言)

    对于java程序员来说,intellj idea这个编辑器,应该很多人都听说过,但用的人似乎并不是很多. 这也没办法,毕竟现在网上的教程,培训班授课,大多还是以eclipse为主. eclipse固然 ...

  8. 纪念一下学写pipeline时脑子里的坑

    用的是filespipeline,用的存储地址是images的地址 测试煎蛋ooxx首页,shell测试的时候返回很多列表,但是实际爬的时候一直只返回一条,很烦,一直测一直测,就是不行,后来才发现,首 ...

  9. class类 __repr__ 与__str__

    >>> class Student(object):... def __init__(self, name):... self.name = name... def __str__( ...

  10. python 类的属性__slots__ (了解一点点)

    当一个类需要创建大量实例时,可以通过__slots__声明实例所需要的属性, 优点: 1)更快的属性访问速度 2)减少内存消耗 3)限定一个类创建的实例只能有固定的实例属性(实例变量),不允许对象添加 ...