卷积优化方法之Winograd

在卷积神经网络当中, 卷积运算是尤其是计算敏感的, 尤其是在端上设备中, 对于性能的要求更为苛刻。对于卷积优化的方法也有很多种,本文便针对近年来最常见的优化方法Winograd做一个简单总结。

相关资料

winograd算法最早是1980年由Terry Winograd提出的,当时并没有引起太大的轰动。在CVPR'16会议上,Lavin等人[1]提出了利用winogrd加速卷积运算,于是winograd加速卷积优化在算法圈里火了一把。网上较多的实现版本为andravin实现的py版本[2]。目前cudnn中计算卷积就使用了该方法。

[1] "Fast Algorithms for Convolutional Neural Networks" Lavin and Gray, CVPR 2016.
[2] https://github.com/andravin/wincnn

算法

在winograd算法下,对于一维卷积,当输出为m,卷积核长为r,要对应的乘法数量:
\[ u(F(m,r)) = m+r+1 \]
将一维卷积扩展到二维,如果输出维度为mxn,卷积核维度为rxs,则对应的乘法数量:
\[u(F(m * n,r * s)) = u(F(m,r)) * u(F(n,s)) = (m+r-1) * (n+s-1) \]

对一个矩阵大小为4 * 4的输入,卷积核大小为3 * 3,对应的输出为2 * 2,正常计算的情况下,滑动窗口或者im2col的计算方法的乘法次数为2*2*3*3 = 36次,而当使用winograd时,对应的乘法次数为$ u(F(2*2,3*3)) = (2+3-1) * (2+3-1)=16 $,乘法次数明显减少。

假设对应的一维输入为[d0,d1,d2,d3],对应的卷积为[g0,g1,g2],对应的输出为[m0,m1,m2],那么:
\[ F(2,3) = \begin{bmatrix}d0 & d1 & d2\\\\d1 & d2 &d3\end{bmatrix} \begin{bmatrix}g0\\\\g1\\\\g3\end{bmatrix} = \begin{bmatrix}m1+m2+m3\\\\m2-m3-m4\end{bmatrix}\]

其中:
\[ m1 = (d0-d1)g0 \]
\[m2 = 0.5(d1+d2)(g0+g1+g2)\]
\[m3 = 0.5(d2-d1)(g0-g1+g2)\]
\[m4 = (d1-d3)g2\]

这种计算方式需要2+3-1=4次乘法,4次加法。写成矩阵乘法的形式即为:
\[ Y = A^T \left[\left[Gg\right] \odot \left[B^Td\right]\right] \]

其中$ \odot $表示 element-wise multiplication. 对于F(2,3),以上矩阵分别为:

\[ B^{T}=\begin{bmatrix} 1 &0&-1 &0 \\ 0&1 &1 &0 \\ 0&-1 &1 &0 \\ 0& 1& 0& -1 \end{bmatrix} \]

\[ G=\begin{bmatrix} 1 & 0 & 0\\ 0.5& 0.5 &0.5 \\ 0.5& -0.5 &0.5 \\ 0& 0 &1 \end{bmatrix} \]

\[ A^{T}=\begin{bmatrix} 1 & 1 & 1 & 0\\ 0 & 1& -1 & -1 \end{bmatrix} \]

\[ g=\begin{bmatrix} g_{0} &g_{1} &g_{2} \end{bmatrix}^{T} \]

\[ d=\begin{bmatrix} d_{0} &d_{1} &d_{2}&d_{3} \end{bmatrix}^{T} \]

扩展为二维的形式即为:

\[ Y = A^T \left[\left[GgG^T\right] \odot \left[B^TdB\right]\right]A \]

注意

  1. 以上描述的 Winograd 算法只展示了在二维的图像 (更确切的说是 tile) 上的过程, 具体在 ConvNet 的多个 channel 的情况, 直接逐个 channel 按照上述方法计算完然后相加即可;
  2. 按照 1. 的思路, 在计算多个 channel 的时候, 仍然有可减少计算次数的地方.
  3. 按照 2. 的思路, Winograd 在目前使用越来越多的 depthwise conv 中其优势不明显了.
  4. 在 tile 较大的时候, Winograd 方法不适用, 因为, 在做 inverse transform 的时候的计算开销抵消了 Winograd 带来的计算节省.
    Winograd 会产生误差

[winograd]winograd算法在卷积中的应用的更多相关文章

  1. 任意半径局部直方图类算法在PC中快速实现的框架。

    在图像处理中,局部算法一般来说,在很大程度上会获得比全局算法更为好的效果,因为他考虑到了图像领域像素的信息,而很多局部算法可以借助于直方图获得加速.同时,一些常规的算法,比如中值滤波.最大值滤波.最小 ...

  2. 06 - 从Algorithm 算法派生类中删除ExecuteInformation() 和ExecuteData() VTK 6.0 迁移

    在先前的vtk中,如vtkPointSetAlgorithm 等算法派生类中定义了虚方法:ExecuteInformation() 和 ExecuteData().这些方法的定义是为了平稳的从VTK4 ...

  3. 1145: 零起点学算法52——数组中删数II

    1145: 零起点学算法52--数组中删数II Time Limit: 1 Sec  Memory Limit: 64 MB   64bit IO Format: %lldSubmitted: 293 ...

  4. KMP算法 --- 在文本中寻找目标字符串

    KMP算法 --- 在文本中寻找目标字符串 很多时候,为了在大文本中寻找到自己需要的内容,往往需要搜索关键字.这其中就牵涉到字符串匹配的算法,通过接受文本和关键词参数来返回关键词在文本出现的位置.一般 ...

  5. 剑指Offer——算法复杂度中的O(logN)底数是多少

    剑指Offer--算法复杂度中的O(logN)底数是多少 前言 无论是计算机算法概论.还是数据结构书中,关于算法的时间复杂度很多都用包含O(logN)这样的描述,但是却没有明确说logN的底数究竟是多 ...

  6. AES加解密算法在Android中的应用及Android4.2以上版本调用问题

     from://http://blog.csdn.net/xinzheng_wang/article/details/9159969 AES加解密算法在Android中的应用及Android4.2以上 ...

  7. tarjan算法-解决有向图中求强连通分量的利器

    小引 看到这个名词-tarjan,大家首先想到的肯定是又是一个以外国人名字命名的算法.说实话真的是很佩服那些算法大牛们,佩服得简直是五体投地啊.今天就遇到一道与求解有向图中强连通分量的问题,我的思路就 ...

  8. 利用“海底捞算法”在MongoDB中优雅地存储一棵树

    目前常见的树形结构数据库存储方案有以下四种,但是在处理无限深度.海量数据的树结构时,都存在一些问题: 1)Adjacency List(邻接表):每个节点仅记录父节点主键.优点是简单,缺点是访问子树需 ...

  9. 图像处理之优化---任意半径局部直方图类算法在PC中快速实现的框架

    在图像处理中,局部算法一般来说,在很大程度上会获得比全局算法更为好的效果,因为他考虑到了图像领域像素的信息,而很多局部算法可以借助于直方图获得加速.同时,一些常规的算法,比如中值滤波.最大值滤波.最小 ...

随机推荐

  1. C#面向对象基本概念总结

    快过年了,发一篇自己的复习总结.以下内容均是个人理解,如文章有幸被浏览,如有错误的地方欢迎大家提出,相互学习相互进步! 面向对象三大基本特征:封装,继承,多态 一.类 (对象声明的三种方式:以普通基类 ...

  2. [HNOI2009]最小圈(分数规划+SPFA判负环)

    题解:求环长比环边个数的最小值,即求min{Σw[i]/|S|},其中i∈S.这题一眼二分,然后可以把边的个数进行转化,假设存在Σw[i]/|S|<=k,则Σw[i]-k|S|<=0,即Σ ...

  3. 第一篇-生成可运行得exe文件

    1. 项目 --> 属性 2. 配置 -->Release 3. 如果可以在其他电脑运行可以不进行下面的,如果不能运行,选择代码生成-->运行库-->MT 4. 完成上述步骤后 ...

  4. MySQL实战45讲学习笔记:索引(第四讲)

    一.索引模型 1.索引的作用: 索引的出现其实是为了提高数据查询的效率,就像书的目录一样 提高数据查询效率 2.索引模型的优缺点比较 二.InnoDB索引模型 1.二叉树是搜索效率最高的,但是实际上大 ...

  5. [面试] Java GC (未整理完)

    Java GC简介 什么是 GC ? Java程序不用像C++程序在程序中自行处理内存的回收释放.这是因为Java在JVM虚拟机上增加了垃圾回收(GC)机制,用以在合适的时间触发垃圾回收. 你都了解哪 ...

  6. python之路(5)文件操作(open)

      目录 前言 文件的打开模式 文件句柄的方法 seek()方法介绍 前言 打开文件,得到文件句柄并赋值给一个变量 通过句柄对文件进行操作 关闭文件 f = open('demo.txt','r',e ...

  7. maven配置阿里镜像仓库

    打开maven的配置文件(windows机器一般在maven安装目录的conf/settings.xml),在<mirrors></mirrors>标签中添加mirror子节点 ...

  8. 我的长大app开发教程第一弹:Fragment布局

    在接下来的一段时间里我会发布一个相对连续的Android教程,这个教程会讲述我是如何从零开始开发“我的长大”这个Android应用. 在开始之前,我先来介绍一下“我的长大”:这是一个校园社交app,准 ...

  9. 轻型Database- sqlite入门

    SQLite 是一个软件库,实现了自给自足的.无服务器的.零配置的.事务性的 SQL 数据库引擎.SQLite 是在世界上最广泛部署的 SQL 数据库引擎.SQLite 源代码不受版权限制. 下面跟着 ...

  10. golang range遍历是新创建对象还是创建对象的引用

    golang range遍历是新创建对象还是创建对象的引用,通俗的讲就是range对range出来的对象的修改会不会同步到被遍历的那个数组.先看如下代码: package main import ( ...