1. 完成的场景

在很多大数据场景下,要求数据形成数据流的形式进行计算和存储。上篇博客介绍了Flink消费Kafka数据实现Wordcount计算,这篇博客需要完成的是将实时计算的结果写到redis。当kafka从其他端获取数据立刻到Flink计算,Flink计算完后结果写到Redis,整个过程就像流水一样形成了数据流的处理

2. 代码

添加第三方依赖

	<dependencies>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-clients -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_2.11</artifactId>
<version>1.4.0</version>
</dependency> <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-streaming-java -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.11</artifactId>
<version>1.4.0</version>
</dependency> <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-java -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>1.4.0</version>
</dependency> <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kafka-0.9 -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka-0.9_2.11</artifactId>
<version>1.4.0</version>
</dependency> <dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-redis_2.10</artifactId>
<version>1.1.5</version>
</dependency> </dependencies>

注意这里的版本最好统一选1.4.0,flink-redis的版本最好选1.1.5,用低版本或其他版本会遇到包冲突或者不同包的同一类不同等逻辑或者第版本有些类没有等java通用的一些问题

逻辑代码

package com.scn;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer09;
import org.apache.flink.streaming.connectors.redis.RedisSink;
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisPoolConfig;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommand;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommandDescription;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisMapper;
import org.apache.flink.streaming.util.serialization.SimpleStringSchema;
import org.apache.flink.util.Collector; import java.util.Properties; public class FilnkCostKafka {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.enableCheckpointing(1000); Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "192.168.1.20:9092");
properties.setProperty("zookeeper.connect", "192.168.1.20:2181");
properties.setProperty("group.id", "test"); FlinkKafkaConsumer09<String> myConsumer = new FlinkKafkaConsumer09<String>("test", new SimpleStringSchema(), properties); DataStream<String> stream = env.addSource(myConsumer);
DataStream<Tuple2<String, Integer>> counts = stream.flatMap(new LineSplitter()).keyBy(0).sum(1); //实例化Flink和Redis关联类FlinkJedisPoolConfig,设置Redis端口
FlinkJedisPoolConfig conf = new FlinkJedisPoolConfig.Builder().setHost("127.0.0.1").build();
//实例化RedisSink,并通过flink的addSink的方式将flink计算的结果插入到redis
counts.addSink(new RedisSink<Tuple2<String, Integer>>(conf,new RedisExampleMapper()));
env.execute("WordCount from Kafka data");
} public static final class LineSplitter implements FlatMapFunction<String, Tuple2<String, Integer>> {
private static final long serialVersionUID = 1L; public void flatMap(String value, Collector<Tuple2<String, Integer>> out) {
String[] tokens = value.toLowerCase().split("\\W+");
for (String token : tokens) {
if (token.length() > 0) {
out.collect(new Tuple2<String, Integer>(token, 1));
}
}
}
} //指定Redis key并将flink数据类型映射到Redis数据类型
public static final class RedisExampleMapper implements RedisMapper<Tuple2<String,Integer>>{
public RedisCommandDescription getCommandDescription() {
return new RedisCommandDescription(RedisCommand.HSET, "flink");
} public String getKeyFromData(Tuple2<String, Integer> data) {
return data.f0;
} public String getValueFromData(Tuple2<String, Integer> data) {
return data.f1.toString();
}
}
}

编写一个测试类

package com.scn;

import redis.clients.jedis.Jedis;

public class RedisTest {
public static void main(String args[]){
Jedis jedis=new Jedis("127.0.0.1");
System.out.println("Server is running: " + jedis.ping());
System.out.println("result:"+jedis.hgetAll("flink"));
}
}

3. 测试

启动Redis服务

redis-server

执行FilnkCostKafka main方法

没有跑出异常信息证明启动没有问题

在kafka producer端输出一些数据

执行测试类RedisTest的main方法

会输出:

Server is running: PONG
result:{flink=2, newyork=1, will=1, kafka=2, wolrd=2, go=1, i=1, meijiasheng=1, is=1, hello=6, myname=1, redis=2}

可以看到数据已经流到Redis

Flink消费Kafka数据并把实时计算的结果导入到Redis的更多相关文章

  1. Flink消费Kafka到HDFS实现及详解

    1.概述 最近有同学留言咨询,Flink消费Kafka的一些问题,今天笔者将用一个小案例来为大家介绍如何将Kafka中的数据,通过Flink任务来消费并存储到HDFS上. 2.内容 这里举个消费Kaf ...

  2. 大数据“重磅炸弹”——实时计算框架 Flink

    Flink 学习 项目地址:https://github.com/zhisheng17/flink-learning/ 博客:http://www.54tianzhisheng.cn/tags/Fli ...

  3. spark streaming从指定offset处消费Kafka数据

    spark streaming从指定offset处消费Kafka数据 -- : 770人阅读 评论() 收藏 举报 分类: spark() 原文地址:http://blog.csdn.net/high ...

  4. iNeuOS工业互联平台,设备容器(物联网)改版,并且实现设备数据点的实时计算和预警。发布3.2版本

    目       录 1.      概述... 2 2.      平台演示... 2 3.      设备容器新版本介绍... 2 4.      全局数据计算及预警平台... 3 5.      ...

  5. Flink消费kafka

    Flink消费Kafka https://blog.csdn.net/boling_cavalry/article/details/85549434 https://www.cnblogs.com/s ...

  6. 使用Flume消费Kafka数据到HDFS

    1.概述 对于数据的转发,Kafka是一个不错的选择.Kafka能够装载数据到消息队列,然后等待其他业务场景去消费这些数据,Kafka的应用接口API非常的丰富,支持各种存储介质,例如HDFS.HBa ...

  7. Sprak2.0 Streaming消费Kafka数据实时计算及运算结果保存数据库代码示例

    package com.gm.hive.SparkHive; import java.util.Arrays; import java.util.Collection; import java.uti ...

  8. Spark Steaming消费kafka数据条数变少问题

    对于基于Receiver 形式,我们可以通过配置 spark.streaming.receiver.maxRate 参数来限制每个 receiver 每秒最大可以接收的记录的数据:对于 Direct ...

  9. flink 读取kafka 数据,partition分配

    每个并发有个编号,只会读取kafka partition  % 总并发数 == 编号 的分区   如: 6 分区, 4个并发 分区: p0 p1 p2 p3 p4 p5 并发: 0 1 2 3    ...

随机推荐

  1. 初入 nodejs -遍历文件夹

    //操作文件 /* 1.fs.stat 获取文件状态 2.fs.readdir 读取文件夹数据 3.fs.access 判断文件夹是否存在 4.path.join 拼路径 */ //操作文件 cons ...

  2. 【洛谷P3649】回文串

    题目大意:给定一个长度为 N 的字符串,定义一个变量为该字符串的回文子串长度乘以该字串出现的次数,求这个变量的最大值是多少. 题解:学会了回文自动机. 回文自动机是两棵树组成的森林结构,并通过 fai ...

  3. BZOJ5261 Rhyme--广义SAM+拓扑排序

    原题链接,不是权限题 题目大意 有\(n\)个模板串,让你构造一个尽量长的串,使得这个串中任意一个长度为\(k\)的子串都是至少一个模板串的子串 题解 可以先看一下这道题 [POI2000]病毒 虽然 ...

  4. mysql8.0.15二进制安装

    mysql8.0.15二进制安装 今天有幸尝试安装了社区版本的mysql8.0.15,记录下来,供以后方便使用.特此感谢知数堂的叶老师,提供了配置文件的模板. # 第一部分:系统配置 # 1.安装系统 ...

  5. 2017-12-19python全栈9期第四天第二节之列表的增删查改之元祖是只读列表、可循环查询、可切片、儿子不能改、孙子可以改

    #!/user/bin/python# -*- coding:utf-8 -*-tu = ('zs','ls','ww',[1,2,3,4,5,'zxcvb'],'zl')print(tu[3])pr ...

  6. BootstrapTable-加载数据

    要加载的数据:https://examples.wenzhixin.net.cn/examples/bootstrap_table/data?search=&order=asc&off ...

  7. js下拉框:从数组中筛选出匹配的数据

    handleChange(val) { let obj = {} // 遍历数组 obj = this.options.find(item => { // 筛选出匹配的数据 return ite ...

  8. Hadoop记录-切换NN

    一.第一种方法 重启namenode(1.1.1.1 1.1.1.2)重启standby节点:1.1hadoop-daemon.sh stop zkfchadoop-daemon.sh stop na ...

  9. Matplotlib画正弦余弦曲线

    参考1:http://www.labri.fr/perso/nrougier/teaching/matplotlib/ 参考2:https://matplotlib.org/api/artist_ap ...

  10. Python——built-in module Help: math

    Help on built-in module math: NAME math DESCRIPTION This module is always available. It provides acc ...