Flink消费Kafka数据并把实时计算的结果导入到Redis
1. 完成的场景
在很多大数据场景下,要求数据形成数据流的形式进行计算和存储。上篇博客介绍了Flink消费Kafka数据实现Wordcount计算,这篇博客需要完成的是将实时计算的结果写到redis。当kafka从其他端获取数据立刻到Flink计算,Flink计算完后结果写到Redis,整个过程就像流水一样形成了数据流的处理
2. 代码
添加第三方依赖
<dependencies>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-clients -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_2.11</artifactId>
<version>1.4.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-streaming-java -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.11</artifactId>
<version>1.4.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-java -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>1.4.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kafka-0.9 -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka-0.9_2.11</artifactId>
<version>1.4.0</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-redis_2.10</artifactId>
<version>1.1.5</version>
</dependency>
</dependencies>
注意这里的版本最好统一选1.4.0,flink-redis的版本最好选1.1.5,用低版本或其他版本会遇到包冲突或者不同包的同一类不同等逻辑或者第版本有些类没有等java通用的一些问题
逻辑代码
package com.scn;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer09;
import org.apache.flink.streaming.connectors.redis.RedisSink;
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisPoolConfig;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommand;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommandDescription;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisMapper;
import org.apache.flink.streaming.util.serialization.SimpleStringSchema;
import org.apache.flink.util.Collector;
import java.util.Properties;
public class FilnkCostKafka {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.enableCheckpointing(1000);
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "192.168.1.20:9092");
properties.setProperty("zookeeper.connect", "192.168.1.20:2181");
properties.setProperty("group.id", "test");
FlinkKafkaConsumer09<String> myConsumer = new FlinkKafkaConsumer09<String>("test", new SimpleStringSchema(), properties);
DataStream<String> stream = env.addSource(myConsumer);
DataStream<Tuple2<String, Integer>> counts = stream.flatMap(new LineSplitter()).keyBy(0).sum(1);
//实例化Flink和Redis关联类FlinkJedisPoolConfig,设置Redis端口
FlinkJedisPoolConfig conf = new FlinkJedisPoolConfig.Builder().setHost("127.0.0.1").build();
//实例化RedisSink,并通过flink的addSink的方式将flink计算的结果插入到redis
counts.addSink(new RedisSink<Tuple2<String, Integer>>(conf,new RedisExampleMapper()));
env.execute("WordCount from Kafka data");
}
public static final class LineSplitter implements FlatMapFunction<String, Tuple2<String, Integer>> {
private static final long serialVersionUID = 1L;
public void flatMap(String value, Collector<Tuple2<String, Integer>> out) {
String[] tokens = value.toLowerCase().split("\\W+");
for (String token : tokens) {
if (token.length() > 0) {
out.collect(new Tuple2<String, Integer>(token, 1));
}
}
}
}
//指定Redis key并将flink数据类型映射到Redis数据类型
public static final class RedisExampleMapper implements RedisMapper<Tuple2<String,Integer>>{
public RedisCommandDescription getCommandDescription() {
return new RedisCommandDescription(RedisCommand.HSET, "flink");
}
public String getKeyFromData(Tuple2<String, Integer> data) {
return data.f0;
}
public String getValueFromData(Tuple2<String, Integer> data) {
return data.f1.toString();
}
}
}
编写一个测试类
package com.scn;
import redis.clients.jedis.Jedis;
public class RedisTest {
public static void main(String args[]){
Jedis jedis=new Jedis("127.0.0.1");
System.out.println("Server is running: " + jedis.ping());
System.out.println("result:"+jedis.hgetAll("flink"));
}
}
3. 测试
启动Redis服务
redis-server
执行FilnkCostKafka main方法
没有跑出异常信息证明启动没有问题
在kafka producer端输出一些数据

执行测试类RedisTest的main方法
会输出:
Server is running: PONG
result:{flink=2, newyork=1, will=1, kafka=2, wolrd=2, go=1, i=1, meijiasheng=1, is=1, hello=6, myname=1, redis=2}
可以看到数据已经流到Redis
Flink消费Kafka数据并把实时计算的结果导入到Redis的更多相关文章
- Flink消费Kafka到HDFS实现及详解
1.概述 最近有同学留言咨询,Flink消费Kafka的一些问题,今天笔者将用一个小案例来为大家介绍如何将Kafka中的数据,通过Flink任务来消费并存储到HDFS上. 2.内容 这里举个消费Kaf ...
- 大数据“重磅炸弹”——实时计算框架 Flink
Flink 学习 项目地址:https://github.com/zhisheng17/flink-learning/ 博客:http://www.54tianzhisheng.cn/tags/Fli ...
- spark streaming从指定offset处消费Kafka数据
spark streaming从指定offset处消费Kafka数据 -- : 770人阅读 评论() 收藏 举报 分类: spark() 原文地址:http://blog.csdn.net/high ...
- iNeuOS工业互联平台,设备容器(物联网)改版,并且实现设备数据点的实时计算和预警。发布3.2版本
目 录 1. 概述... 2 2. 平台演示... 2 3. 设备容器新版本介绍... 2 4. 全局数据计算及预警平台... 3 5. ...
- Flink消费kafka
Flink消费Kafka https://blog.csdn.net/boling_cavalry/article/details/85549434 https://www.cnblogs.com/s ...
- 使用Flume消费Kafka数据到HDFS
1.概述 对于数据的转发,Kafka是一个不错的选择.Kafka能够装载数据到消息队列,然后等待其他业务场景去消费这些数据,Kafka的应用接口API非常的丰富,支持各种存储介质,例如HDFS.HBa ...
- Sprak2.0 Streaming消费Kafka数据实时计算及运算结果保存数据库代码示例
package com.gm.hive.SparkHive; import java.util.Arrays; import java.util.Collection; import java.uti ...
- Spark Steaming消费kafka数据条数变少问题
对于基于Receiver 形式,我们可以通过配置 spark.streaming.receiver.maxRate 参数来限制每个 receiver 每秒最大可以接收的记录的数据:对于 Direct ...
- flink 读取kafka 数据,partition分配
每个并发有个编号,只会读取kafka partition % 总并发数 == 编号 的分区 如: 6 分区, 4个并发 分区: p0 p1 p2 p3 p4 p5 并发: 0 1 2 3 ...
随机推荐
- OpenStack视图
OpenStack视图 OpenStack视图是个全局资源的概念,统计了OpenStack所纳管资源的总量和使用量,因此OpenStack视图的资源通常又称为物理资源.OpenStack基于该资源使用 ...
- [SDOI2017]苹果树
题目描述 https://www.luogu.org/problemnew/show/P3780 题解 一道思路巧妙的背包题. 对于那个奇怪的限制,我们对此稍加分析就可以发现它最后选择的区域是一个包含 ...
- ubuntu mirror
# apt-mirror configuration file ## The default configuration options (uncomment and change to overri ...
- 【学习笔记】TensorFlow
1. tf.Graph().as_default() 的作用 首先看官网上的解释: 再看博主 Joanna-In-Hdu&Hust 对此比较通俗易懂的解释(https://www.cnblog ...
- Djnago框架组成
Django.core 核心处理库由以下组成: (1)url分析.请求处理.缓存等. Django.conf Django.conf的主要作用有: (1)处理全局配置,如数据库.加载应用.middle ...
- Apache的安装与配置+PHP
https://blog.csdn.net/u012130971/article/details/79284937 文件夹名称不要有空格
- jQuery使用():Callbacks回调函数列表之异步编程(含源码分析)
Callbacks的基本功能回调函数缓存与调用 特定需求模式的Callbacks Callbacks的模拟源码 一.Callbacks的基本功能回调函数缓存与调用 Callbacks即回调函数集合,在 ...
- centos6 升级pip后导致pip不可用
问题:公司内部一台服务器在用pip安装python某个模块的时候提示pip需要升级,然后我就手贱升级了一下,结果悲催了,再次执行pip命令时报错如下: Google了下错误,说是: CENTOS/RH ...
- Aras 发布Web Services
https://blog.csdn.net/plm888/article/details/10890173
- Technocup 2019 - Elimination Round 2
http://codeforces.com/contest/1031 (如果感觉一道题对于自己是有难度的,不要后退,懂0%的时候敲一遍,边敲边想,懂30%的时候敲一遍,边敲边想,懂60%的时候敲一遍, ...