CycleGan论文笔记
原文地址:https://arxiv.org/abs/1703.10593
背景——风格迁移
图片生成领域是GAN网络的天下,最近很多人将GAN网络应用到了图像风格迁移领域。这篇论文也是做image to image translation,之前已经有较为成功的网络PIX2PIX了(同一个团队做的),本篇论文的出发点和PIX2PIX的不同在于:
- PIX2PIX网络要求提供image pairs,也即是要求提供x和y,整个思路为:从噪声z,根据条件x,生成和真实图片y相近的y‘。条件x和图像y是具有一定关联性的。
- 而本篇CycalGAN不要求提供pairs,如题目所说:Unpaired。因为成对的图像数据集其实并不多。这里的x和y不要求有什么较好的关联性,可以是毫不相干的两幅图像。

方法
普通的GAN损失:

但单纯的使用这一个损失是无法进行训练的。原因在于,映射F完全可以将所有x都映射到y空间的同一张图片,使损失无效化。为此提出循环GAN网络。从域x生成域y,再从y生成回x,循环往复。

网络结构
两个生成器网络:G和F;两个鉴别器网络:Dx和Dy。整个网络是一个对偶结构。
下图对网络结构说明很清楚,出处见水印。


Loss函数
Loss部分除了经典的基础的GAN网络的对抗loss,还提出了一个cycle-loss。因为网络需要保证生成的图像必须保留有原始图像的特性,所以如果我们使用生成器GenratorA-B生成一张假图像,那么要能够使用另外一个生成器GenratorB-A来努力恢复成原始图像。此过程必须满足循环一致性。
对抗损失有两部分:

对偶网络的循环损失分为前向循环损失和后向循环损失,分别为:


采用L1 loss:

最后,总的损失函数为:

lamba=10
代码中还有个loss:identity loss
大致可以这样理解,生成器是负责域x到域y的图像生成,如果输入域y的图片还是应该生成域y的图片y‘’,计算y‘’和输入y的loss。
训练细节
- Generator采用的是Perceptual losses for real-time style transfer and super-resolution 一文中的网络结构;一个resblock组成的网络,降采样部分采用stride 卷积,增采样部分采用反卷积;Discriminator采用的仍是pix2pix中的PatchGANs结构,大小为70x70
- 定义四个xx器的损失函数,分别优化训练G和D,两个生成器共享权重,两个鉴别器也共享权重训练
- 计算每个生成图像的损失是不可能的,因为会耗费大量的计算资源。建立一个图像库,存储之前生成的50张图,而不只是最新的生成器生成的图
- Lr=0.0002。对于前100个周期,保持相同的学习速率0.0002,然后在接下来的100个周期内线性衰减到0。
实验结果

一些对比试验结果:(通过label生成原图y‘,再利用FCN对生成的原图y‘进行分割,进行一个label-photo的实验)


CycleGan论文笔记的更多相关文章
- Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文, ...
- 论文笔记之:Visual Tracking with Fully Convolutional Networks
论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015 CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...
- Deep Learning论文笔记之(八)Deep Learning最新综述
Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...
- Twitter 新一代流处理利器——Heron 论文笔记之Heron架构
Twitter 新一代流处理利器--Heron 论文笔记之Heron架构 标签(空格分隔): Streaming-process realtime-process Heron Architecture ...
- Deep Learning论文笔记之(六)Multi-Stage多级架构分析
Deep Learning论文笔记之(六)Multi-Stage多级架构分析 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些 ...
- Multimodal —— 看图说话(Image Caption)任务的论文笔记(一)评价指标和NIC模型
看图说话(Image Caption)任务是结合CV和NLP两个领域的一种比较综合的任务,Image Caption模型的输入是一幅图像,输出是对该幅图像进行描述的一段文字.这项任务要求模型可以识别图 ...
- 论文笔记(1):Deep Learning.
论文笔记1:Deep Learning 2015年,深度学习三位大牛(Yann LeCun,Yoshua Bengio & Geoffrey Hinton),合作在Nature ...
- 论文笔记(2):A fast learning algorithm for deep belief nets.
论文笔记(2):A fast learning algorithm for deep belief nets. 这几天继续学习一篇论文,Hinton的A Fast Learning Algorithm ...
- 论文笔记:Towards Diverse and Natural Image Descriptions via a Conditional GAN
论文笔记:Towards Diverse and Natural Image Descriptions via a Conditional GAN ICCV 2017 Paper: http://op ...
随机推荐
- UEP-添加
添加数据时候自动更新时间,注意添加数据时,要设置最大主键 时间的工具类:CommonUtil 人的工具类: ContextUtil ScmCompanyAccount scmCompanyAccoun ...
- P1342 请柬
最近一直在做最短路......所以今天就再做一道最短路吧.... 题目描述 在电视时代,没有多少人观看戏剧表演.Malidinesia古董喜剧演员意识到这一事实,他们想宣传剧院,尤其是古色古香的喜剧片 ...
- 网络-03-端口号-linux端口详解大全--著名端口
端口号码 / 层 名称 注释 1 tcpmux TCP 端口服务多路复用 5 rje 远程作业入口 7 echo Echo 服务 9 discard 用于连接测试的空服务 11 systat 用于列举 ...
- Winform 加载datagridview
string str = @"Data Source=(localdb)\MSSQLLocalDB;Initial Catalog=Test;Integrated Security=True ...
- RESTClient 使用
Wisdom RESTClient 一款自动化测试REST API的工具,它可以自动化测试RESTful API并生成精美的测试报告,同时基于测试过的历史API,可以生成精美的RESTful API文 ...
- python 基于numpy的线性代数运算
import numpy as np A = [[1,2],[2,1]] np.linalg.inv(A) #计算矩阵A的逆矩阵. #显示结果 [[-0.33333333 0.66666667] [ ...
- Centos7配置SVN服务端
环境 Centos 7 SVN 1.7 安装SVN Shell> yum install subversion -y 准备配置和仓库 Shell> mkdir -p /mydata/rep ...
- 【Mongo】安装并配置副本集
最近的一个小项目需要用到mongo,所以开始学习下mongo.本打算开三台虚机严格按照生产来配置,然后发现有点带不动,所以决定在一台上通过三个端口来模拟. 1.获取安装包 curl -O http:/ ...
- android开发_ViewGroup(组视图)-- 五大布局
view组--ViewGroup(组视图) ViewGroup的作用:在view中添加子控件.ViewGroup的5个子类,就是五大布局: (1) LinearLayout 线性布局(常用) (2) ...
- 复旦高等代数II(18级)每周一题
本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十五教学周结束,每周的周末公布一道思考题(预计15道),供大家思考和解答.每周一题将通过“高等代数官方博客”(以博文的形式)和“高等代 ...