目录

前言

今天讲的是,有关sympy的微积分部分的知识。

对应官网的知识:Calculus

官网教程

https://docs.sympy.org/latest/tutorial/calculus.html

(一)求导数-diff()

1.一阶求导-diff()

(1)说明:

语法是:diff(expr,x)

(2)源代码:

from sympy import *

# 初始化
x = symbols('x') # 表达式
expr1 = cos(x) expr2 = exp(x**2) # 求导
r1 = diff(expr1, x)
r2 = diff(expr2, x) print("r1:", r1)
print("r2:", r2)

(3)输出:

\(\cos(x)\) --> \(-\sin(x)\)

\(e^{x^2}\) --> \(2xe^{x^2}\)

2.多阶求导-diff()

(1)说明:

多阶求导同样的使用diff(),其有两种形式

  1. 带参数中,添加几个x,就是对x的几次求导。diff(expr, x, x,x……)
  2. 用数字来控制所求的阶数:diff(expr, x, n)

(2)源代码:

from sympy import *

# 初始化
x = symbols('x') # 表达式
expr1 = x**4 # 第一种形式多阶求导
r1 = diff(expr1, x)
r2 = diff(expr1, x, x)
r3 = diff(expr1, x, x, x) print("="*30)
print(r1)
print(r2)
print(r3) # 第二种形式多阶求导
r4 = diff(expr1, x, 1)
r5 = diff(expr1, x, 2)
r6 = diff(expr1, x, 3) print("="*30)
print(r4)
print(r5)
print(r6)

(3)输出:

\(x^4\) --> \(24x\)

3.求偏导数-diff()

(1)说明:

diff()也可以单独对一个变量求导,这便是偏导数。

(2)源代码:

from sympy import *

# 初始化
x, y, z = symbols('x y z') # 表达式
expr1 = exp(x*y*z) # 求导
r1 = diff(expr1, x, y, y, z, z, z, z)
r2 = diff(expr1, x, 1, y, 2, z, 4) print("r1:", r1)
print("r2:", r2) print(latex(r1))
print(latex(r2))

(3)输出:

\(e^{xyz}\) --> \(x^{3} y^{2} \left(x^{3} y^{3} z^{3} + 14 x^{2} y^{2} z^{2} + 52 x y z + 48\right) e^{x y z}\)

(二)求积分-integrate()

(1)说明:

求积分有三种形式,并且都用的是integrate()方法

  1. 求不定积分:integrate(expr, var)
  2. 求定积分:integrate(expr, (var, min, max))
  3. 求多重积分:integrate(expr, (var1, min, max),(var2,min,max))

(2)源代码:

from sympy import *

# 初始化
x, y = symbols('x y') # 表达式
expr1 = cos(x)
expr2 = exp(-x)
expr3 = exp(-x**2-y**2) # 求不定积分
r1 = integrate(expr1, x) # 求定积分
r2 = integrate(expr2, (x, 0, oo)) # 求多重积分
r3 = integrate(expr3, (x, -oo, oo), (y, -oo, oo)) print("r1:", r1)
print("r2:", r2)
print("r3:", r3)

(3)输出:

\(\cos{\left (x \right )}\)-->\(\sin{\left (x \right )}\)

\(\int_{0}^\infty{e^{- x}dx}​\)-->\(1​\)

\(\int_{-\infty}^\infty \int_{-\infty}^\infty e^{- x^{2} - y^{2}}dxdy\)-->\(\pi\)

(三)求极限-limit()

(1)说明:

求极限使用limit(),其有下两种使用方法:

  1. 趋进某个点的极限:limit(expr, var, doit)
  2. 从侧边趋进某个值的极限:limit(expr, var,doit, "+") (左侧趋进同理)

注:sympy里,不可以使用无穷的趋进。

(2)源代码:

from sympy import *

# 初始化
x = symbols('x') # 表达式
expr1 = sin(x)/x
expr2 = 1/x # 求趋于某个值的极限
r1 = limit(expr1, x, 0) # 正向趋进
r2 = limit(expr2, x, 0, '+') # 负向趋进
r3 = limit(expr2, x, 0, '-') print(r1)
print(r2)
print(r3)

(3)输出:

\(\lim_{x \to 0}\sin(x)/x\)-->\(1\)

\(\lim_{x \to 0^+}​\)-->\(\infty​\)

\(\lim_{x \to 0^-}\)-->\(-\infty​\)

(四)级数展开-series()

1.说明:

级数展开请使用:series(expr, x0, xn),使用.removeO()去除尾数。

2.源代码:

from sympy import *

# 初始化
x = symbols('x') # 表达式
expr1 = exp(sin(x)) # 级数展开
r1 = expr1.series(x, 0, 6) # 去除尾数
r2 = expr1.series(x, 0, 6).removeO() print(r1)
print(r2)

3.输出:

\(e^{\sin(x)}​\)-->\(1 + x + \frac{x^{2}}{2} - \frac{x^{4}}{8} - \frac{x^{5}}{15} + O\left(x^{6}\right)​\)

\(e^{\sin(x)}\)-->\(- \frac{x^{5}}{15} - \frac{x^{4}}{8} + \frac{x^{2}}{2} + x + 1​\)

作者:Mark

日期:2019/03/17 周日

5.4Python数据处理篇之Sympy系列(四)---微积分的更多相关文章

  1. 4.4Python数据处理篇之Matplotlib系列(四)---plt.bar()与plt.barh条形图

    目录 目录 前言 (一)竖值条形图 (二)水平条形图 1.使用bar()绘制: 2.使用barh()绘制: (三)复杂的条形图 1.并列条形图: 2.叠加条形图: 3.添加图例于数据标签的条形图: 目 ...

  2. 3.4Python数据处理篇之Numpy系列(四)---ndarray 数组的运算

    目录 目录 (一)数组与标量的运算 1.说明: 2.实例: (二)元素级的运算(一元函数) 1.说明: 2.实例: (三)数组级的运算(二元函数) 1.说明: 2.实例: 目录 1.数组与标量的运算 ...

  3. 5.6Python数据处理篇之Sympy系列(六)---矩阵的操作

    目录 目录 前言 (一)矩阵的创建-Matrix() 1.说明: 2.源代码: 3.输出: (二)常用的构造矩阵 1.说明: 2.源代码: 3.输出: (三)基本操作 1.说明: 2.源代码: 3.输 ...

  4. 5.5Python数据处理篇之Sympy系列(五)---解方程

    目录 目录 前言 (一)求解多元一次方程-solve() 1.说明: 2.源代码: 3.输出: (二)解线性方程组-linsolve() 1.说明: 2.源代码: 3.输出: (三)解非线性方程组-n ...

  5. 5.3Python数据处理篇之Sympy系列(三)---简化操作

    目录 5.3简化操作 目录 前言 (一)有理数与多项式的简化 1.最简化-simplify() 2.展开-expand() 3.提公因式-factor() 4.合并同类项-ceiling() 5.简化 ...

  6. 5.2Python数据处理篇之Sympy系列(二)---Sympy的基本操作

    目录 目录 前言 (一)符号的初始化与输出设置-symbol() symbols() latex() 1.作用: 2.操作: (二)替换符号-subs(old,new) 1.说明: 2.源代码: 3. ...

  7. 5.1Python数据处理篇之Sympy系列(一)---Sympy的大体认识

    目录 目录 前言 目录 前言 sympy是python一个强大的数学符号运算第三方库,具体的功能请看下面操作 官网教程: https://docs.sympy.org/latest/tutorial/ ...

  8. 4.14Python数据处理篇之Matplotlib系列(十四)---动态图的绘制

    目录 目录 前言 (一)需求分析 (二)随机数的动态图 1.思路分析: 2.源代码: 2.输出效果: 目录 前言 学习matplotlib已经到了尾声,没有必要再继续深究下去了,现今只是学了一些基础的 ...

  9. 4.13Python数据处理篇之Matplotlib系列(十三)---轴的设置

    目录 目录 前言 (一)设置轴的范围 1.同时对于x,y轴设置 2.分别对与x,y轴的设置 (二)设置刻度的大小 1.普通的刻度设置 2.添加文本的刻度设置 3.主副刻度的设置 (三)设置轴的数据 1 ...

随机推荐

  1. Spring Boot druid监控页添加登录访问权限(用户名+密码)

    需求 druid作为数据源的一名后起之秀,凭借其出色的性能,渐渐被大家使用.当然还有他的监控页面也有这非常大的作用.但是监控页面往往包含了很多隐私的数据信息,所以需要将其保密,所以可以为监控页面添加一 ...

  2. 如何把你的.net程序打包上传到nuget

    写在前面 每个.net开发者都经常用nuget管理自己的程序包,install一个json组件啊,一个工具类什么的,这些都是别人写好的.如果我也写好了一个自己感觉很拿的出手的组件,想轻松的使用nuge ...

  3. Softmax函数详解与推导

    一.softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个 ...

  4. linux磁盘管理系列二:软RAID的实现

    磁盘管理系列 linux磁盘管理系列一:磁盘配额管理   http://www.cnblogs.com/zhaojiedi1992/p/zhaojiedi_linux_040_quota.html l ...

  5. Java开发知识之Java中的Map结构

    Java开发知识之Java中的Map结构 一丶Map接口 Map没有实现Collection接口,提供的是Key 到Value的映射. Map中.不能包含相同的Key,每个Key只能映射一个Value ...

  6. angr进阶(4)从任意位置开始

    从程序的任意位置开始可以大大的减少测试的时间,使用的方法是控制程序运行到某时刻的寄存器的值来进行的.asisctffinals2015_fake p = angr.Project("fake ...

  7. Shell编程(week4_day1)--技术流ken

    本节内容 1.shell简介 2. shell分类 3. 查看shell 4. 第一个shell脚本 5. shell编程常用命令   5.1 grep   5.2 cut   5.3 sort   ...

  8. 第一册:lesson 107.

    第一册: It's too small. Do you like this dress,madam? I like the colour very much.It's a lovely dress,b ...

  9. PLSQL创建Oracle定时任务

    在使用oracle最匹配的工具plsql的时候,如果用plsql创建定时器呢?下面我简单介绍使用工具创建定时器的方法: 1.创建任务执行的存储过程,如名称为YxtestJob,向测试表中插入数据 cr ...

  10. [C#] C# 知识回顾 - 装箱与拆箱

    装箱与拆箱 目录 生活中的装箱与拆箱 C# 的装箱与拆箱 值类型和引用类型 装箱 拆箱 读者见解 生活中的装箱与拆箱    我们习惯了在网上购物,这次你想买本编程书 -- <C 语言从入门到放弃 ...