873D. Merge Sort
Merge sort is a well-known sorting algorithm. The main function that sorts the elements of array a with indices from [l, r) can be implemented as follows:
If the segment [l, r) is already sorted in non-descending order (that is, for any i such that l ≤ i < r - 1 a[i] ≤ a[i + 1]), then end the function call;
Let ;
Call mergesort(a, l, mid);
Call mergesort(a, mid, r);
Merge segments [l, mid) and [mid, r), making the segment [l, r) sorted in non-descending order. The merge algorithm doesn't call any other functions.
The array in this problem is 0-indexed, so to sort the whole array, you need to call mergesort(a, 0, n).
The number of calls of function mergesort is very important, so Ivan has decided to calculate it while sorting the array. For example, if a = {1, 2, 3, 4}, then there will be 1 call of mergesort — mergesort(0, 4), which will check that the array is sorted and then end. If a = {2, 1, 3}, then the number of calls is 3: first of all, you call mergesort(0, 3), which then sets mid = 1 and calls mergesort(0, 1) and mergesort(1, 3), which do not perform any recursive calls because segments (0, 1) and (1, 3) are sorted.
Ivan has implemented the program that counts the number of mergesort calls, but now he needs to test it. To do this, he needs to find an array a such that a is a permutation of size n (that is, the number of elements in a is n, and every integer number from [1, n] can be found in this array), and the number of mergesort calls when sorting the array is exactly k.
Help Ivan to find an array he wants!
Input
The first line contains two numbers n and k (1 ≤ n ≤ 100000, 1 ≤ k ≤ 200000) — the size of a desired permutation and the number of mergesort calls required to sort it.
Output
If a permutation of size n such that there will be exactly k calls of mergesort while sorting it doesn't exist, output - 1. Otherwise output n integer numbers a[0], a[1], ..., a[n - 1] — the elements of a permutation that would meet the required conditions. If there are multiple answers, print any of them.
Examples
inputCopy
3 3
outputCopy
2 1 3
inputCopy
4 1
outputCopy
1 2 3 4
inputCopy
5 6
outputCopy
-1
题目要你构造长度为N,调用归并排序次数为K 的序列,如果已经排好序,他将不在调用归并排序
做法,首先,这个调用除了第一次,之后肯定都是调用两次,所以如果是偶数的话肯定是不可以的,所以首先排除次数是偶数的
之后,调用的时候,分成两边,然后K在传递的时候,如果K/2是奇数,则K1=K2=K/2,否则K1=K2-2;
因为我们的下两次调用也要保证两边为奇数次,
最后,如果当前调用区间只有一个数字,就可以返回了,如果区间有两个数字,并且调用时K为2,则交换这两个数字
如果K为2,则可以直接交换mid-1和mid,每次定义一个tot+1或者+2最后看是否等于K,是则输出,不是则-1
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<stdio.h>
#include<float.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#define sf scanf
#define pf printf
#define fi first
#define se second
#define mp make_pair
#define pii pair<int,int>
#define scf(x) scanf("%d",&x)
#define prf(x) printf("%d\n",x)
#define scff(x,y) scanf("%d%d",&x,&y)
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=a;i>=n;i--)
#define mm(x,b) memset((x),(b),sizeof(x))
#define scfff(x,y,z) scanf("%d%d%d",&x,&y,&z)
typedef long long ll;
const ll mod=1e9+7;
using namespace std;
const double eps=1e-8;
const int inf=0x3f3f3f3f;
const double pi=acos(-1.0);
const int N=2e5+10;
int a[N];
int tot=0;
void dfs(int l,int r,int q)
{
tot++;
int mid=(l+r)>>1;
if(!q) return ;
if(q==2&&mid>0)
{
q=0;tot+=2;
swap(a[mid-1],a[mid]);
return ;
}
if(l+2==r){
tot+=2;
swap(a[l],a[l+1]); return;
}
if(mid==l) return;
int k1,k2;
k1=k2=q/2;
if((q/2)%2==0)
k1--,k2++;
if(q) dfs(l,mid,k1-1);
if(q) dfs(mid,r,k2-1);
}
int main()
{
int n,k;cin>>n>>k;
rep(i,0,n) a[i]=i+1;
if(!(k&1)) { cout<<"-1"; return 0; }
dfs(0,n,k-1);
if(tot==k)
{
cout<<a[0];
rep(i,1,n) cout<<" "<<a[i];
}else
cout<<"-1";
return 0;
}
873D. Merge Sort的更多相关文章
- CodeForces 873D Merge Sort 构造 分治
题意 给出一个归并排序的算法\(mergesort\),如果对于当前区间\([l, r)\)是有序的,则函数直接返回. 否则会分别调用\(mergesort(l, mid)\)和\(mergesort ...
- [算法]——归并排序(Merge Sort)
归并排序(Merge Sort)与快速排序思想类似:将待排序数据分成两部分,继续将两个子部分进行递归的归并排序:然后将已经有序的两个子部分进行合并,最终完成排序.其时间复杂度与快速排序均为O(nlog ...
- SQL Tuning 基础概述06 - 表的关联方式:Nested Loops Join,Merge Sort Join & Hash Join
nested loops join(嵌套循环) 驱动表返回几条结果集,被驱动表访问多少次,有驱动顺序,无须排序,无任何限制. 驱动表限制条件有索引,被驱动表连接条件有索引. hints:use_n ...
- 归并排序(Merge Sort)
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用.将已有序的子序列合并,得到完全有序的序列:即先使每个子序列有序,再使子序 ...
- 归并排序(merge sort)
M erge sort is based on the divide-and-conquer paradigm. Its worst-case running time has a lower ord ...
- Summary: Merge Sort of Array && 求逆序对
常用算法(后面有inplace版本): package ArrayMergeSort; import java.util.Arrays; public class Solution { public ...
- 基础排序算法之并归排序(Merge Sort)
并归排序是学习分治法 (Merge Sort) 的好例子.而且它相对于选择,插入,冒泡排序来说,算法性能有一定提升.我首先会描述要解决的问题,并给出一个并归排序的例子.之后是算法的思路以及给出伪代码. ...
- Divide and Conquer.(Merge Sort) by sixleaves
algo-C1-Introductionhtml, body {overflow-x: initial !important;}html { font-size: 14px; }body { marg ...
- STL 源代码剖析 算法 stl_algo.h -- merge sort
本文为senlie原创.转载请保留此地址:http://blog.csdn.net/zhengsenlie merge sort ----------------------------------- ...
随机推荐
- MySQL1:客户端/服务器架构
一.MySQL的客户端/服务器架构 前言 之前对MySQL的认知只限于会写些SQL,本篇算是笔记,记录和整理下自己对MySQL不熟悉的地方. 大致逻辑: MySQL的服务器程序直接和我们存储的数据打交 ...
- JAVA学习笔记(3)—— 抽象类与接口
1. Java 抽象类 在面向对象的概念中,所有的对象都是通过类来描绘的,但是反过来,并不是所有的类都是用来描绘对象的,如果一个类中没有包含足够的信息来描绘一个具体的对象,这样的类就是抽象类. 抽象类 ...
- “Excel-建议不可用于您所选择的数据”错误提示
Excel作为一项的数据图表绘制软件,在工作中经常用到.“建议不可用于您所选择的数据这一错误提示,我也遇到了几次了,但是每次遇到总是忘了上次是什么原因.这次,写下博客记录.一般都是在复制网页或者其他数 ...
- 【python】面向对象编程之@property、@setter、@getter、@deleter用法
@property装饰器作用:把一个方法变成属性调用 使用@property可以实现将类方法转换为只读属性,同时可以自定义setter.getter.deleter方法 @property&@ ...
- centOS设置开机自启
原文:https://blog.csdn.net/txz317/article/details/49683439 1.利用 chkconfig 来配置启动级别 在CentOS或者RedHat其他系统下 ...
- psutil(搬运,一个月后稍后修改)
psutil是一个跨平台库,能够轻松实现获取系统运行的进程和系统利用率(包括CPU.内存.磁盘.网络等)信息.它主要用来做系统监控,性能分析,进程管理 安装:pip install psutil 1. ...
- 生产宕机dunp配置
修改线程数 <self-tuning-thread-pool-size-min>100</self-tuning-thread-pool-size-min> <self- ...
- spring-data-jpa 二、多对一结构、Repository
一.Entity 例如一个user实体和一个department实体 多个用户对应一个部门 1.user类 @id:声明了一个属性映射到数据库主键字段,主键生成策略有@GenerateValue来指 ...
- JAVA -数据类型与表达式---字符串
字符串 Java中,字符串就是对象,它由 String类定义.字符串是计算机程序设计中非常基础的类型,因此Java允许定义字符串常量(string literal),并以双引号作为字符串的定界符. 一 ...
- Zabbix (五)
介绍添加主机时,各个参数的含义 https://blog.51cto.com/5001660/2154692 Zabbix配置介绍: https://blog.51cto.com/5001660/21 ...