luogu P5294 [HNOI2019]序列
这个什么鬼证明直接看uoj的题解吧根本不会证明
首先方案一定是若干段等值的\(B\),然后对于一段,\(B\)的值应该是\(A\)的平均值.这个最优方案是可以线性构造的,也就是维护以区间平均值为权值的单调栈,每次在后面插入一个元素,不断弹栈并与最后一个合并,直到平均值单调递增
然后这个单调栈是可以两个区间的单调栈直接合并的,因为合并完后新单调栈的断点集合是原来两段的断点集合的子集.合并直接暴力就好了合并的话一定是前面那个的一段后缀的后面的一段前缀合并,然后后面的前缀位置(就是合并区间的右端点)是可以二分的,然后二分左端点使得合并的区间平均值最大,然后如果这个平均值比右端点右边的那一块的平均值小,那么最优的右端点就在在这个右端点以及其左边,否则在右边
然后用个可持久化线段树预处理一下每个前缀和后缀的单调栈就行了,注意从后往前和从前往后做都是一样的,能得到最优解
以上都是蒯的题解qwq,感性理解一下?
// luogu-judger-enable-o2
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<vector>
#include<cmath>
#include<ctime>
#include<queue>
#include<map>
#include<set>
#define LL long long
#define db long double
using namespace std;
const int N=1e5+10,mod=998244353;
const db eps=1e-10;
int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9'){if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int fpow(int a,int b){int an=1;while(b){if(b&1) an=1ll*an*a%mod;a=1ll*a*a%mod,b>>=1;} return an;}
int inv(int a){return fpow(a,mod-2);}
LL sm[N*85],rsm[N*85];
int n,m,st[N],tp,a[N],ps1[N],ps2[N],an[N*85],nm[N*85],rnm[N*85],ch[N*85][2],len1[N],len2[N],rt1[N],rt2[N],tt;
LL sta[N][2];
void inst(int o1,int o2,int x,int ll,int rr,LL ns,int nn)
{
int l=1,r=n,tl=0;
while(l<r)
{
st[++tl]=o1;
int mid=(l+r)>>1;
if(x<=mid)
{
ch[o1][0]=++tt,ch[o1][1]=ch[o2][1];
o1=ch[o1][0],o2=ch[o2][0];
r=mid;
}
else
{
ch[o1][0]=ch[o2][0],ch[o1][1]=++tt;
o1=ch[o1][1],o2=ch[o2][1];
l=mid+1;
}
}
sm[o1]=rsm[o1]=ns,nm[o1]=rnm[o1]=nn;
int ax=1ll*ns%mod*inv(nn%mod)%mod;
an[o1]=nn?(1ll*(ps2[rr]-ps2[ll-1]+mod)%mod+1ll*ax*ax%mod*nn%mod-2ll*(ps1[rr]-ps1[ll-1]+mod)%mod*ax%mod)%mod:0;
an[o1]+=an[o1]<0?mod:0;
while(tl)
{
int o=st[tl--];
sm[o]=sm[ch[o][0]]+sm[ch[o][1]],nm[o]=nm[ch[o][0]]+nm[ch[o][1]],an[o]=(an[ch[o][0]]+an[ch[o][1]])%mod;
rsm[o]=rsm[ch[o][1]],rnm[o]=rnm[ch[o][1]];
}
}
struct node
{
LL x;
int y;
node(){x=y=0;}
node(LL ns,int nn){x=ns,y=nn;}
node operator + (const node &bb) const {return node(x+bb.x,y+bb.y);}
};
node quer(int o,int l,int r,int ll,int rr)
{
if(ll>rr||!o) return node(0,0);
if(ll<=l&&r<=rr) return node(sm[o],nm[o]);
int mid=(l+r)>>1;
node an;
if(ll<=mid) an=an+quer(ch[o][0],l,mid,ll,rr);
if(rr>mid) an=an+quer(ch[o][1],mid+1,r,ll,rr);
return an;
}
node quer(int o,int l,int r,int lx)
{
if(!o) return node(0,0);
if(l==r) return node(sm[o],nm[o]);
int mid=(l+r)>>1;
if(lx<=mid) return quer(ch[o][0],l,mid,lx);
return quer(ch[o][1],mid+1,r,lx);
}
int getan(int o,int l,int r,int ll,int rr)
{
if(ll>rr||!o) return 0;
if(ll<=l&&r<=rr) return an[o];
int mid=(l+r)>>1,an=0;
if(ll<=mid) an+=getan(ch[o][0],l,mid,ll,rr);
if(rr>mid) an+=getan(ch[o][1],mid+1,r,ll,rr);
return an%mod;
}
int cmp(LL s1,LL n1,LL s2,LL n2)
{
s1*=n2,s2*=n1;
if(s1==s2) return 0;
return s1>s2?1:-1;
}
int nl;
node querl(int o,node aa)
{
node an;
int l=1,r=n;
while(l<r)
{
int mid=(l+r)>>1;
node ar=aa+an+node(sm[ch[o][1]],nm[ch[o][1]]),al=node(rsm[ch[o][0]],rnm[ch[o][0]])+ar;
if(cmp(al.x,al.y,ar.x,ar.y)<0) o=ch[o][1],l=mid+1;
else an=an+node(sm[ch[o][1]],nm[ch[o][1]]),o=ch[o][0],r=mid;
}
node ar=aa+an,al=node(sm[o],nm[o])+ar;
if(cmp(al.x,al.y,ar.x,ar.y)>0) an=an+node(sm[o],nm[o]);
nl=l;
return an;
}
int main()
{
n=rd(),m=rd();
for(int i=1;i<=n;++i)
{
a[i]=rd();
ps1[i]=(ps1[i-1]+a[i])%mod;
ps2[i]=(ps2[i-1]+1ll*a[i]%mod*a[i]%mod)%mod;
}
for(int i=1;i<=n;++i)
{
int las=tp;
sta[++tp][0]=a[i],sta[tp][1]=1;
while(tp>1&&cmp(sta[tp-1][0],sta[tp-1][1],sta[tp][0],sta[tp][1])>=0)
sta[tp-1][0]+=sta[tp][0],sta[tp-1][1]+=sta[tp][1],--tp;
rt1[i]=rt1[i-1];
for(int j=las;j>=tp;--j)
{
int la=rt1[i];
inst(rt1[i]=++tt,la,j,j,j,0,0);
}
int la=rt1[i];
inst(rt1[i]=++tt,la,tp,i-sta[tp][1]+1,i,sta[tp][0],sta[tp][1]);
len1[i]=tp;
}
tp=0;
for(int i=n;i;--i)
{
int las=tp;
sta[++tp][0]=a[i],sta[tp][1]=1;
while(tp>1&&cmp(sta[tp-1][0],sta[tp-1][1],sta[tp][0],sta[tp][1])<=0)
sta[tp-1][0]+=sta[tp][0],sta[tp-1][1]+=sta[tp][1],--tp;
rt2[i]=rt2[i+1];
for(int j=las;j>=tp;--j)
{
int la=rt2[i];
inst(rt2[i]=++tt,la,j,j,j,0,0);
}
int la=rt2[i];
inst(rt2[i]=++tt,la,tp,i,i+sta[tp][1]-1,sta[tp][0],sta[tp][1]);
len2[i]=tp;
}
printf("%d\n",an[rt1[n]]);
while(m--)
{
int x=rd(),y=rd();
int l=1,r=len2[x+1],z=0;
while(l<=r)
{
int mid=(l+r)>>1;
node a1=quer(rt2[x+1],1,n,mid,len2[x+1])+node(y,1),a2=mid>1?quer(rt2[x+1],1,n,mid-1):node(1e14,1);
if(cmp(a1.x,a1.y,a2.x,a2.y)<0) z=mid,l=mid+1;
else r=mid-1;
}
int z1=len1[x-1]+1,z2=0;
l=1,r=z+1;
while(l<=r)
{
int mid=(l+r)>>1;
node a1=quer(rt2[x+1],1,n,mid,len2[x+1])+node(y,1);
node a2=querl(rt1[x-1],a1),a3=mid>1?quer(rt2[x+1],1,n,mid-1):node(1e14,1);
if(cmp((a1+a2).x,(a1+a2).y,a3.x,a3.y)<0) z1=nl,z2=mid,l=mid+1;
else r=mid-1;
}
node a1=quer(rt1[x-1],1,n,z1,len1[x-1]),a2=quer(rt2[x+1],1,n,z2,len2[x+1]),aa=a1+a2+node(y,1);
int ll=x-a1.y,rr=x+a2.y,ax=1ll*aa.x%mod*inv(aa.y%mod)%mod;
int ans=(((1ll*ps2[rr]-ps2[ll-1]-1ll*a[x]*a[x]+1ll*y*y)%mod+mod)%mod+1ll*ax*ax%mod*(rr-ll+1)%mod-2ll*(1ll*ps1[rr]-ps1[ll-1]-a[x]+y+mod+mod)%mod*ax%mod)%mod;
ans+=ans<0?mod:0;
printf("%lld\n",(1ll*ans+getan(rt1[x-1],1,n,1,z1-1)+getan(rt2[x+1],1,n,1,z2-1))%mod);
}
return 0;
}
luogu P5294 [HNOI2019]序列的更多相关文章
- 【题解】Luogu P5294 [HNOI2019]序列
原题传送门 题意:给你一个长度为\(n\)的序列\(A\),每次询问修改一个元素(只对当前询问有效),然后让你找到一个不下降序列\(B\),使得这两个序列相应位置之差的平方和最小,并输出这个最小平方和 ...
- [luogu P3648] [APIO2014]序列分割
[luogu P3648] [APIO2014]序列分割 题目描述 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列.为了得到k+1个子序 ...
- [Luogu 2642] 双子序列最大和
Description 给定一个长度为n的整数序列,要求从中选出两个连续子序列,使得这两个连续子序列的序列和之和最大,最终只需输出最大和.一个连续子序列的和为该子序列中所有数之和.每个连续子序列的最小 ...
- luogu P5288 [HNOI2019]多边形
传送门 这是什么神仙操作... 首先要注意一些性质.首先每一个\((x,n)\)的边可以把当前多边形分成两半,这两半的操作是独立的.然后对于某一个没有\((x,n)\)的边的多边形,最优操作是唯一的. ...
- 【题解】Luogu P2572 [SCOI2010]序列操作
原题传送门:P2572 [SCOI2010]序列操作 这题好弱智啊 裸的珂朵莉树 前置芝士:珂朵莉树 窝博客里对珂朵莉树的介绍 没什么好说的自己看看吧 操作1:把区间内所有数推平成0,珂朵莉树基本操作 ...
- Luogu 3321 [SDOI2015]序列统计
BZOJ 3992 点开这道题之后才发现我对原根的理解大概只停留在$998244353$的原根是$3$…… 关于原根: 点我 首先写出$dp$方程,设$f_{i, j}$表示序列长度为$i$当前所有数 ...
- 【洛谷5294】[HNOI2019] 序列(主席树维护单调栈+二分)
点此看题面 大致题意: 给你一个长度为\(n\)的序列\(A\),每次询问修改一个元素(只对当前询问有效),然后让你找到一个不下降序列\(B\),使得这两个序列相应位置之差的平方和最小,并输出这个最小 ...
- 匈牙利算法 - Luogu 1963 变换序列
P1963 变换序列 题目描述 对于N个整数0,1,-,N-1,一个变换序列T可以将i变成Ti,其中:Ti∈{0,1,-,N-1}且 {Ti}={0,1,-,N-1}. x,y∈{0,1,-,N-1} ...
- 【Luogu P1631】序列合并
Luogu P1631 题意很好懂,不作分析 很容易想出一个解法是求出每一个和,排序后取前n个. 当然这种做法妥妥的会MLE+TLE 我们会发现实质上这种做法的缺点在于存入了大量不需要的数据. 那么该 ...
随机推荐
- mn
http://image.uczzd.cn/10129986679866437816.jpg?id=0&from=export https://www.cnblogs.com/ityoukno ...
- ubuntu下安装飞鸽传书
1.从官网下载Linux版本飞鸽传书(http://www.ipmsg.org.cn/) 2.解压后执行 ./QIpmsg 若报错 libstdc++.so.6: version `CXXABI_AR ...
- Linux内核入门到放弃-Ext2数据结构-《深入Linux内核架构》笔记
Ext2文件系统 物理结构 结构概观 块组是该文件系统的基本成分,容纳了文件系统的其他结构.每个文件系统都由大量块组组成,在硬盘上相继排布: ----------------------------- ...
- Linux+Shell常用命令总结
因为自己不经常使用linux的命令行工具,但是mac的终端还是经常使用的,有些命令总是要想一会或者百度一下才知道怎么用,抽时间整理了一下常用的命令,作为笔记. 常用命令 查看文件操作: ls :列出当 ...
- 从明面上学习ASP.NET Core
一.前言 这篇文章就是从能看到地方去学习Core,没有很深奥,也没有很难懂,现在我们开始吧. 二.构建项目,引发思考 创建项目的步骤真的很简单,你要是不会,我真也没法了,我这是创建的M ...
- 基于 HTML5 WebGL 的 3D 棉花加工监控系统
前言 现在的棉花加工行业还停留在传统的反应式维护模式当中,当棉花加下厂的设备突然出现故障时,控制程序需要更换.这种情况下,首先需要客户向设备生产厂家请求派出技术人员进行维护,然后生产厂家才能根据情况再 ...
- Python的各种推导式合集
推导式的套路 之前我们已经学习了最简单的列表推导式和生成器表达式.但是除此之外,其实还有字典推导式.集合推导式等等. 下面是一个以列表推导式为例的推导式详细格式,同样适用于其他推导式. variabl ...
- jQuery 事件冒泡
1 . 什么是冒泡 在页面上可以有多个事件,也可以多个元素响应同一个事件.假设网页上有两个元素,其中一个元素嵌套在另一个元素里,并且都被绑定了 click 事件,同时<body>元素上也绑 ...
- 栈(LIFO)
1 栈的定义 栈是限定在表尾进行插入和删除操作的线性表. 2 栈的特点 1)栈是特殊的线性表,线性表也具有前驱后继性: 2)栈的插入和删除操作只能在表尾即栈顶进行: 3)后进先出. 3 栈的实现及关键 ...
- 深入理解AMQP协议转载
转自https://blog.csdn.net/weixin_37641832/article/details/83270778 文章目录 一.AMQP 是什么二.AMQP模型工作过程深入理解三.Ex ...