TensorFlow资源整理
什么是TensorFlow?
TensorFlow 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU)、服务器、移动设备等等。TensorFlow 最初由Google Brain 小组(隶属于Google机器智能研究机构)的研究员和工程师们开发出来,用于机器学习和深度神经网络方面的研究,但这个系统的通用性使其也可广泛用于其他计算领域。
机器学习
- 深度学习:关于神经网络的机器学习高级课程,其中包含大量的图片和文字模型
- 机器学习规则:关于机器学习工程的最佳做法
- deeplearn.js:用于在浏览器中进行互动式模型训练和推理的开放源代码工具包
TensorFlow
- 安装 TensorFlow:关于在 Mac OS X、Ubuntu 和 Windows 计算机上设置 TensorFlow 的说明
- tf.contrib.learn 快速入门:关于使用高级 TensorFlow API 构建神经网络分类器的指南
- TensorFlow 编程人员指南:有关 TensorFlow 主要功能(包括变量、线程和调试)的详细指南
- 2017 年 TensorFlow 开发者峰会:一系列技术讲座和演示,重点介绍 TensorFlow API 和实际应用
教程
- TensorFlow 教程1 – 从基础到有趣的TensorFlow程序
- TensorFlow 教程2 – 介绍基于谷歌TensorFlow框架的深度学习,其中有些教程是学习了Newmu的Theano教程
- TensorFlow 实例 – TensorFlow教程以及一些新手的代码实例
- Sungjoon的TensorFlow-101 – 在Jupyter Notebook上用python写的TensorFlow教程
- Terry Um的TensorFlow练习 – 根据其他TensorFlow项目再创作的代码
- 在树莓派3上安装TensorFlow – 在树莓派上正确安装和运行TensorFlow
- 时间序列上的分类 – 在TensorFlow上的基于手机传感数据的LSTM循环神经网络
模型/工程
- 图片形态转换 – 无监督图片形态转换的实现
- Show, Attend and Tell算法 -基于聚焦机制的自动图像生成器
- Neural Style – Neural Style 算法的TensorFlow实现
- Pretty Tensor – Pretty Tensor提供了高级别的TensorFlow封装接口
- Neural Style – neural style的又一实现
- AlexNet3D – 用3D卷积层实现AlexNet
- TensorFlow笔记 – TensorFlow的学习笔记和总结,附带一些图片说明
- NeuralArt – 艺术风格绘画的神经网络算法TensorFlow实现
- DQN玩乒乓
- TensorFlow生成手写体 – 实现Alex Grave的论文中关于生成手写体的部分
- TensorFlow实现神经图灵机 – TensorFlow实现神经图灵机
- 基于物体搜索和过滤视频 – 使用卷积神经网络基于视频中的物品、地点等来搜索、过滤和描述视频
- 使用TensorFlow来转换莎士比亚作品和现代版本的英语 – 实现莎士比亚作品和现代版本的英语的单语转换
- 聊天机器人 – 一个基于深度学习的聊天机器人
- colornet – 使用神经网络给灰度图像着色
- 图像生成器 – Show and Tell算法实现
- Attention based的自动图像生成器 – Show, Attend and Tell算法实现
- Weakly_detector – 用于定位的深度特征
- Dynamic Capacity Networks – DCN的TensorFlow实现
- TensorFlow实现HMM – 实现HMM的维特比算法和前后向算法
- DeepOSM – 使用OpenStreetMap和卫星图像训练深度学习网络
- DQN-tensorflow – TensorFlow通过OpenAI Gym实现深度学习来实现“深度强化学习下达到人类水平的控制”
- Highway Networks – 使用TensorFlow和Fomoro进行简单的超深度网络训练
- 用CNN做句子分类 – 用TensorFlow实现句子分类的卷积神经网络
- End-To-End Memory Networks – 使用TensorFlow实现End-To-End的Memory Network
- Character-Aware的神经语言模型 – 基于字符感知的LSTM语言模型
- YOLO TensorFlow ++ – TensorFlow实现YOLO实时物体检测,支持实时运行在移动设备上
- Wavenet – TensorFlow实现用来生成音频的WaveNet对抗生成网络架构
- Mnemonic Descent Method – TensorFlow实现助记符下降法:重现端对端的人脸对齐
由TensorFlow提供技术支持
- YOLO TensorFlow – 实现YOLO:实时物体检测
- android-yolo – 在安卓设备商使用YOLO实行实时物体检测,由TensorFlow提供技术支持
- Magenta – 在制作音乐和艺术中使用机器智能提升艺术形态(研究项目)
库
- Scikit Flow (TensorFlow Learn) – 深度/机器学习的简化版接口(现在是TensorFlow的一部分)
- tensorflow.rb – TensorFlow的Ruby版本,使用了SWIG
- TensorFlowlearn – 有高级别API的深度学习库
- TensorFlow-Slim – TensorFlow中的高级别简化版库
- TensorFrames – Apache Spark上DataFrames的TensorFlow封装
- caffe-tensorflow – 转换Caffe模型为TensorFlow的模式
- keras – 用于TensorFlow和Theano的小型的模块化的库
- SyntaxNet 语法分析神经网络模型 – 全球标准化的Transition-Based神经网络模型的TensorFlow实现
- keras-js – 在GPU的支持下,在浏览器中运行Keras模型
- NNFlow – 一个简单的框架,可以将ROOT NTuples转换成可以在TensorFlow使用的Numpy数据
视频
- TensorFlow Guide 1 – TensorFlow的安装和使用指南1
- TensorFlow Guide 2 – TensorFlow的安装和使用指南2
- TensorFlow Basic Usage – 基本使用指南
- TensorFlow Deep MNIST for Experts – 深入了解MNIST
- TensorFlow Udacity Deep Learning – 在有1GB数据的Cloud 9在线服务安装TensorFlow的步骤
- 为什么谷歌希望所有人都可以访问TensorFlow
- 1/19/2016TensorFlow 硅谷见面会
- 1/21/2016TensorFlow 硅谷见面会
- 19th Apr 2016 斯坦福CS224d 第七课 – TensorFlow介绍 – CS224d 用于自然语言处理的深度学习 By Richard Socher
- 通过TensorFlow了解机器学习 – Pycon 大会,2016年
- 使用TensorFlow的大规模深度学习 – Jeff Dean在Spark Summit 2016上的演讲
- TensorFlow和深度学习
论文
- TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems – 论文介绍了TensorFlow的接口以及我们在google上构建的这些接口的实现
- TensorFlow.Learn: TensorFlow’s High-level Module for Distributed Machine Learning – TensorFlow用于分布式机器学习的高级别模块
- Comparative Study of Deep Learning Software Frameworks – 这个研究运行在不同的深度学习架构上,我们也评估在单机上使用CPU和GPU配置时同一框架的性能
- Distributed TensorFlow with MPI – 在论文中,我们使用MPI将TensorFlow在大规模集群中扩展
- Globally Normalized Transition-Based Neural Networks – 这个论文介绍了SyntaxNet背后的模型
- TensorFlow: A system for large-scale machine learning – 这个论文展示了TensorFlow的数据流模型并与存在的系统进行对比,展现了它引人注目的性能
官方公告
- TensorFlow: smarter machine learning, for everyone – 介绍了TensorFlow
- Announcing SyntaxNet: The World’s Most Accurate Parser Goes Open Source – SyntaxNet的发布公告“一个基于TensorFlow的开源神经网络系统,为自然语言理解系统打下了基础”
博文
- Why TensorFlow will change the Game for AI – 为什么TensorFlow会改变游戏的AI
- TensorFlow for Poets – 了解TensorFlow的实现
- Introduction to Scikit Flow – Simplified Interface to TensorFlow – Scikit Flow简介,它简化了TensorFlow的接口
- Building Machine Learning Estimator in TensorFlow – 了解TensorFlow的内部学习评估器
- TensorFlow – Not Just For Deep Learning – TensorFlow,不仅仅为了深度学习
- The indico Machine Learning Team’s take on TensorFlow – indico机器学习团队采纳TensorFlow
- The Good, Bad, & Ugly of TensorFlow – 为期六个月快速演进的报告(一个小贴士和窍门来弥补TensorFlow的不足)
- Fizz Buzz in TensorFlow – Joel Grus的一个玩笑
- RNNs In TensorFlow, A Practical Guide And Undocumented Features – 基于TensorFlow的RNN实现,Github上提供了步骤和全套代码
- 使用TensorBoard来可视化TensorFlow训练的图片分类
- TensorFlowRecords Guide – 语义分割和处理TensorFlowRecord文件格式
社区
书
- 《First Contact with TensorFlow – 第一次接触TensorFlow》。作者 Jordi Torres 是UPC Barcelona Tech 的教授。也是 Barcelona 超级计算中心的研究经理和高级顾问
- 《Deep Learning with Python – 深度学习之python》,使用Keras在Theano和TensorFlow开发深度学习模型
- 《TensorFlow for Machine Intelligence – TensorFlow实现机器智能》,提供完成的教程,从基本的图运算到在实际应用中制造深度学习模型
- 《Getting Started with TensorFlow – TensorFlow入门》,开始学习并使用谷歌最新的数据计算库TensorFlow来深度分析数据
- 《Hands-On Machine Learning with Scikit-Learn and TensorFlow – 通过Scikit-Learn和TensorFlow来实践机器学习》,覆盖了机器学习的基础、训练以及在多个服务器和GPU上部署深度学习网络,以及CNN、RNN、自动编码器和Deep Q.
- 《Building Machine Learning Projects with Tensorflow》 – 这本书包含了多个不同类型的工程,来说明TensorFlow在不同场景中的应用,这本书的工程包括了训练模型、机器学习、深度学习以及多种神经网络,每个工程都是一个精妙的、有意义的项目,会教我们如何使用TensorFlow并在使用中如何对数据分层
TensorFlow资源整理的更多相关文章
- 移动web资源整理
[原]移动web资源整理 2013年初接触移动端,简单做下总结,首先了解下移动web带来的问题 设备更新换代快--低端机遗留下问题.高端机带来新挑战 浏览器厂商不统一--兼容问题多 网络更复杂--弱网 ...
- 个人Web工具箱&资源整理(1)
很久就想把使用的工具及收藏的资源整理一番:一是为了传达博客社区的理念:资源共享,而是方便自己及团队快速获取. 学习资源: 首推两个入门级在线参考网站. 1 w3c school. 2 Runoob.c ...
- React入门资源整理
另外,附上我搜集的一些比较实用的学习资料,建议先看这些撸起来,再看什么乱七八糟的awsome系列. React入门资源整理 React项目新手指南 http://www.w3ctech.com/top ...
- Markdown使用简介 及 学习资源整理
Markdown资源整理 官网 http://daringfireball.net/projects/markdown/ http://jgm.github.io/stmd/spec.html htt ...
- 超全PHP学习资源整理:入门到进阶系列
PHP是少数几门在语言层面饱受诟病,但在实际开发和应用上却又让人无法撒手的语言之一.就好比路边摊小吃,一遍骂人家不卫生,一遍却又说:真香.所谓接地气,不外如此,大道理不说,PHP光是轮子多.市场占有率 ...
- 第二弹:超全Python学习资源整理(进阶系列)
造一个草原要一株三叶草加一只蜜蜂.一株三叶草,一只蜂,再加一个梦.要是蜜蜂少,光靠梦也行. - 狄金森 "成为编程大牛要一门好语言加一点点天分.一门好语言,一点点天分,再加一份坚持.要是天分 ...
- Git 初学者使用指南及Git 资源整理
Git 资源整理 Git is a free and open source distributed version control system designed to handle everyth ...
- WPF学习资源整理
WPF(WindowsPresentation Foundation)是微软推出的基于Windows Vista的用户界面框架,属于.NET Framework 3.0的一部分.它提供了统一的编程模型 ...
- 【Java Web】入门资源整理
[网站] 1.Java Web Application Tutorial for Beginners - JournalDev Google top1 除Java Web还有很多其他教程 2.Intr ...
随机推荐
- linux环境下快速安装Mariadb和Redis
一 Mariadb(Mysql)篇 1.新建一个yum源仓库 touch /etc/yum.repos.d/Mariadb.repo 2.在这个yum源仓库文件中,添加仓库url地址 [mariadb ...
- Redis学习笔记(1)——Redis简介
一.Redis是什么? Remote Dictionary Server(Redis) 是一个开源的使用ANSI C语言编写.遵守BSD协议.支持网络.可基于内存亦可持久化的日志型.Key-Value ...
- 转://看懂Oracle中的执行计划
一.什么是Oracle执行计划? 执行计划是一条查询语句在Oracle中的执行过程或访问路径的描述 二.怎样查看Oracle执行计划? 2.1 explain plan for命令查看执行计划 在sq ...
- [LeetCode]2. 两数相加
题目链接:https://leetcode-cn.com/problems/add-two-numbers/ 题目描述: 给出两个 非空 的链表用来表示两个非负的整数.其中,它们各自的位数是按照 逆序 ...
- 基于winserver的Apollo配置中心分布式&集群部署实践(正确部署姿势)
基于winserver的Apollo配置中心分布式&集群部署实践(正确部署姿势) 前言 前几天对Apollo配置中心的demo进行一个部署试用,现公司已决定使用,这两天进行分布式部署的时候 ...
- zabbix proxy部署
一.概述 环境: 因为公司需要监控远程客户机,但server端无法主动连接agent端,客户端可以连接公司ip 公司有固定ip,可以开放某个端口给zabbixserver,客户机agent端可以主动通 ...
- day22---面向对象基础初识
面向过程编程: 核心是过程两个字,指的是解决问题的步骤,即先干什么再干什么,基于面向过程设计的程序就好比在设计一条流水线,是一种机械的思维方式. 优点:复杂问题流程化, 缺点:程序的可扩展性差 面向对 ...
- [转]C#通过委托更新UI(异步加载)
我们在使用 windowform 编程的时候,我们或许可能会越到,各种在窗体加载的时候,会进行其他的操作: 1.如果是在加载之前进行其它操作,则整个界面出来的很慢,而且若是时间长的话,页面很久才能出来 ...
- [Oracle运维工程师手记] 如何从trace 文件,判断是否执行了并行
[Oracle运维工程师手记系列]如何从trace 文件,判断是否执行了并行 客户说,明明指定了并行的hint,OEM 却报说没有并行,并且提供了画面. 客户的SQL文长这样: INSERT/*+ p ...
- OSGI打安装包步骤(底包制作)
相关资源下载 equinox-SDK-LunaSR2 : https://pan.baidu.com/s/1xOzZZ3_VAuQJ3Zfp4W8Yyw 提取码: gjip gemini-web- ...