指数型生成函数 及 多项式求ln
指数型生成函数
我们知道普通型生成函数解决的是组合问题,而指数型生成函数解决的是排列问题
对于数列\(\{a_n\}\),我们定义其指数型生成函数为
\[G(x) = a_0 + a_1x + a_2\frac{x^2}{2!} + a_3\frac{x^3}{3!} + a_4\frac{x^4}{4!} + \dots = \sum\limits_{i = 0}^{\infty} a_i\frac{x^i}{i!}\]
那么对于两个数列\(\{a_n\}\)和\(\{b_n\}\),其对应成生成函数为
\[G(x) = \sum\limits_{i = 0}^{\infty} a_i\frac{x^i}{i!}\]
\[F(x) = \sum\limits_{i = 0}^{\infty} b_i\frac{x^i}{i!}\]
那么
\[
\begin{aligned}
F(x) \centerdot G(x) &= (\sum\limits_{i = 0}^{\infty} a_i \frac{x^i}{i!})(\sum\limits_{i = 0}^{\infty} b_i \frac{x^i}{i!}) \\
&= \sum\limits_{n = 0}^{\infty} (\sum\limits_{i = 0}^{\infty} \frac{a_ix^i}{i!} \centerdot \frac{b_{n - i}x^{n - i}}{(n - i)!})x^n \\
&= \sum\limits_{n = 0}^{\infty} (\sum\limits_{i = 0}^{\infty} {n \choose i} a_i b_{n - i}) \frac{x^n}{n!}
\end{aligned}
\]
由此可见两个指数型生成函数相乘,如果\(x^i\)的系数表示的是选择\(i\)个该物品的方案数,那么\(F(x) \centerdot G(x)\)的\(x^i\)的系数表示的就是从\(a\)和\(b\)中选出\(i\)个物品的排列数
一般地,对于多重集合\(M\),从中选取\(k\)个元素的排列数,若限定元素\(a_i\)出现的次数集合为\(M_i\),则该组合数序列的生成函数为
\[\prod\limits_{i = 1}^{n}(\sum\limits_{m \in M_i} \frac{x^m}{m!})\]
泰勒展开式
通常,在指数型生成函数的使用过程中,一般都会用到泰勒展开式:
\[e^{x} = \sum\limits_{i = 0}^{\infty} \frac{x^i}{i!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \frac{x^n}{n!} + \dots\]
扩展的一些式子:
\[\frac{e^x + e^{-x}}{2} = \sum\limits_{i = 0}^{\infty} \frac{x^{2i}}{(2i)!}\]
\[\frac{e^x - e^{-x}}{2} = \sum\limits_{i = 0}^{\infty} \frac{x^{2i + 1}}{(2i + 1)!}\]
还有一些比较有用的公式:
\[\frac{1}{1 - x} = \sum\limits_{i = 0}^{\infty} x^i\]
\[ln(1 + x) = \sum\limits_{i = 0}^{\infty} (-1)^{i} \frac{x^{i + 1}}{i + 1}\]
\[(1 + x)^{a} = \sum\limits_{i = 0}^{\infty} a^{\underline{i}}\frac{x^i}{i!}\]
\[sin(x) = \sum\limits_{i = 0}^{\infty} (-1)^{i}\frac{x^{2i + 1}}{(2i + 1)!}\]
\[cos(x) = \sum\limits_{i = 0}^{\infty} (-1)^{i}\frac{x^{2i}}{(2i)!}\]
多项式求\(ln\)
意义?
我们要求将一个集合大小为\(n\)的方案数,逆向思考
假如我们求出了生成函数\(F(x)\),其中\(x^i\)项的系数表示集合大小为\(i\)的方案数
我们构造一个函数
\[G(x) = \frac{F(x)}{1!} + \frac{F^2(x)}{2!} + \frac{F^3(x)}{3!} + \dots\]
观察式子发现\(G(x)\)中\(x^i\)的系数实际上就是选出若干集合大小刚好为\(i\)的方案数
假设这个方案数很好求,我们能很快构造出\(G(x)\),我们现在要求\(F(x)\)的话就要使用多项式求\(ln\)了
观察
\[G(x) = \frac{F(x)}{1!} + \frac{F^2(x)}{2!} + \frac{F^3(x)}{3!} + \dots = e^{F(x)}\]
则
\[F(x) = lnG(x)\]
求法
假如我们要求\(G(x) = lnF(x)\)
求导得
\[G'(x) = \frac{F'(x)}{F(x)}\]
则
\[G(x) = \int \frac{F'(x)}{F(x)} dx\]
所以我们只需多项式求导,多项式求逆,多项式乘法,多项式积分
复杂度\(O(nlogn)\)
指数型生成函数 及 多项式求ln的更多相关文章
- bzoj 3456 城市规划 —— 分治FFT / 多项式求逆 / 指数型生成函数(多项式求ln)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 首先考虑DP做法,正难则反,考虑所有情况减去不连通的情况: 而不连通的情况就是那个经典 ...
- [BZOJ3456]城市规划(生成函数+多项式求逆+多项式求ln)
城市规划 时间限制:40s 空间限制:256MB 题目描述 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一 ...
- BZOJ 3456: 城市规划 [多项式求逆元 组合数学 | 生成函数 多项式求ln]
3456: 城市规划 题意:n个点组成的无向连通图个数 以前做过,今天复习一下 令\(f[n]\)为n个点的无向连通图个数 n个点的完全图个数为\(2^{\binom{n}{2}}\) 和Bell数的 ...
- BZOJ3456 城市规划 【多项式求ln】
题目链接 BZOJ3456 题解 真是一道经典好题,至此已经写了分治\(NTT\),多项式求逆,多项式求\(ln\)三种写法 我们发现我们要求的是大小为\(n\)无向联通图的数量 而\(n\)个点的无 ...
- 【BZOJ】3456: 城市规划(多项式求ln)
题解 在我写过分治NTT,多项式求逆之后 我又一次写了多项式求ln 我们定义一个数列的指数型生成函数为 \(\sum_{i = 0}^{n} \frac{A_{i}}{i!} x^{i}\) 然后这个 ...
- bzoj 3456 城市规划——分治FFT / 多项式求逆 / 多项式求ln
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 分治FFT: 设 dp[ i ] 表示 i 个点时连通的方案数. 考虑算补集:连通的方 ...
- 多项式求ln,求exp,开方,快速幂 学习总结
按理说Po姐姐三月份来讲课的时候我就应该学了 但是当时觉得比较难加上自己比较懒,所以就QAQ了 现在不得不重新弄一遍了 首先说多项式求ln 设G(x)=lnF(x) 我们两边求导可以得到G'(x)=F ...
- 【BZOJ3456】轩辕朗的城市规划 EGF+多项式求ln
我们构造$f(i)$和$g(i)$. 其中$f(x)$表示由$x$个节点构成的无向简单连通图的个数. $g(x)$表示有$x$个节点构成的无向简单图(不要求连通)的个数. 显然,由$x$个节点构成的无 ...
- 洛谷5月月赛T30212 玩游戏 【分治NTT + 多项式求ln】
题目链接 洛谷T30212 题解 式子很容易推出来,二项式定理展开后对于\(k\)的答案即可化简为如下: \[k!(\sum\limits_{i = 0}^{k} \frac{\sum\limits_ ...
随机推荐
- Xamarin 学习笔记 - Layout(布局)
本文翻译自CodeProject文章:https://www.codeproject.com/Articles/1227733/Xamarin-Notes-Xamarin-Forms-Layouts ...
- WPF开发为按钮提供添加,删除和重新排列ListBox内容的功能
介绍 我有一种情况,我希望能够将项目添加到列表中,并在列表中移动项目,这似乎是使用a的最简单方法ListBox.我立刻想到了如何以通用的方式做到这一点,然后,也许,可以使用行为来做到这一点.这似乎是一 ...
- Spring容器
1.Spring简介: a)Spring春天 b)官网:https://spring.io c)设计理念:轮子理念,不要重复创造轮子: d)Spring可以被理解为一个容器,用于管理其他的框架: e) ...
- linux 大小写转化
(1)sed: cat file | sed 'y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNOPQRSTUVWXYZ/' (2)tr: cat file | ...
- SQL语句(理论)
1.SQL已经成为关系数据库的标准语言 2.SQL是一个非过程化的语言,因为他一次处理一个记录 3.SQL命令比较简单,最高级的命令几天之内便可掌握. 有属下类型的命令: 查询数据. 在表中插入.修改 ...
- iOS中Realm数据库的基本用法
原文 http://git.devzeng.com/blog/simple-usage-of-realm-in-ios.html 主题 RealmiOS开发 Realm是由 Y Combinat ...
- LeetCode算法题-Can Place Flowers(Java实现)
这是悦乐书的第272次更新,第287篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第140题(顺位题号是605).假设你有一个花坛,其中一些地块是种植的,有些则不是. 然 ...
- 前端面试必备的css盒子模型
今天同学发给了我一份前端基础的面试题,第一道便是对css盒子模型的理解,我看到的第一眼想到的是div,然后就...懵逼了,知其然不知其所以然.所以打算写一写盒子模型的概念理解啥的,如有写的不当的地方, ...
- python接口自动化-post请求1
一.查看官方文档 1. 学习一个新的模块,直接用 help 函数就能查看相关注释或案例内容,例如 具体信息如下,可查看 python 发送 ge t和 post 请求的案例: F:\test-req- ...
- C#深度学习のLINQ
一.LINQ的由来 LINQ是Language Integrated Query的缩写,意思是语言扩展查询 查询是一种从数据源检索数据的表达式. 查询通常用专门的查询语言来表示. 随着时间的推移,人们 ...