基本参数:(如何基本参数和我的电脑不一致,有可能会出意外的错误)

操作系统:Windows 10,64位

Anaconda版本:Python 3.6版本。关于Anaconda的介绍、安装及使用教程可查看:点击

本文写作时间:2019年3月26日

全程手打,不可避免的可能出现某些错误,如果您发现请及时指正。

一、首先是安装CPU版本Tensorflow

1、打开Anaconda Prompt,输入清华仓库镜像:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes

2、创建一个python3.5的环境,环境名称为tensorflow:

注意,此时python的版本和后面tensorflow的版本有匹配问题,这一步选择的为python3.5

conda create -n tensorflow python=3.5

有需要确认的地方,都输入:y

环境名称配置好之后,点击Anaconda Navigator,左侧的Environments就有了这一项tensorflow,如下图:

3、在Anaconda Prompt中激活tensorflow环境:

activate tensorflow

激活后如下图所示:

4、利用清华镜像,安装cpu版本的TensorFlow,其版本为1.13.1

pip install --upgrade --ignore-installed tensorflow   #CPU

到这一步,CPU版本的TensorFlow就安装好了,我们仍需要做一下测试,确保万无一失。

5、测试Tensorflow

在激活TensorFlow环境下,输入python,进入到python界面(图中可以看出,python版本是3.5.4)

输入以下代码:

import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))

出现上图的结果就说明安装成功!

输入pip freeze,可以看到tensorflow的版本为1.13.1

或者输入pip list,但是有可能出现警告:解决方式为:点击  ,用户MrSky的回答。

DEPRECATION: The default format will switch to columns in the future. You can use --format=(legacy|columns) (or define a format=(legacy|columns) in your pip.conf under the [list] section) to disable this warning.

6、利用Anaconda Navigator安装spyder、ipytho包。

打开Anaconda Navigator,切换到tensorflow环境,选择Not installed,找到相应的包点Apply。

二、配置keras

安装好tensorflow后,我们可以继续安装keras

1、在Anaconda Prompt中激活tensorflow环境,输入:

pip install keras -U --pre 

我安装的keras版本为2.2.4,同样,我们也需要进入python界面后输入:

import keras         #测试是否成功,成功安装效果如下图。

三、安装GPU版本的tensorflow

1、配置环境

tensorflow-gpu的版本和CDUDA版本,甚至CUDNN版本都有着对应关系。这里选择的版本为:

python:3.6

CUDA:9.0

CUDNN:7.0

这一部分安装了这为博主的文章一步一步安装(第三步、安装tensorflow-gpu之前)即可,在这里就不重复了。

2、创建一个python3.5的环境,环境名称为tensorflow-GPU:

conda create -n tensorflow-GPU python=3.6

环境名称配置好之后,点击Anaconda Navigator,左侧的Environment就有了这一项tensorflow-GPU,如下图:

3、在Anaconda Prompt中激活tensorflow-GPU环境:

activate tensorflow-GPU

4、安装tensorflow-GPU,版本为1.7.0,建议使用清华镜像安装

pip install --upgrade setuptools  #先更新一下pip,不然后面的安装有可能报错
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow-gpu==1.7.0 #GPU版

此时可以验证一下安装是否成功,方法同上面的CPU版本验证。

5、验证此时的tensorflow的代码是否是在使用GPU

import tensorflow as tf
a = tf.test.is_built_with_cuda() #判断CUDA是否可用
b = tf.test.is_gpu_available(cuda_only=False,min_cuda_compute_capability=None) #判断GPU是否可用
print(a)
print(b)

输出结果是:
True
True
代表CUDA和GPU可用。

在这里要提醒一点,之前不知道怎么回事,在tensorflow-GPU这个环境里安装了CPU版本的tensorflow,导致GPU版本的tensorflow安装之后,始终无法调用,错误提示为:

No module named 'tensorflow' 

因此提醒大家,在安装之后用pip list看一下是否同时安装了两个版本的tensorflow,如果安装了两个版本,则先全都卸载掉,然后再重新安装GPU版本。卸载方式如下(直接复制就好)

pip uninstall tensorflow   #卸载CPU版
pip uninstall tensorflow-gpu #卸载GPU版本

6、查看一位博主的文章,如果同时安装了两个版本,默认下运行gpu版,如想运行cpu版,可代码中设置如下:

with tf.Session() as ses:
with tf.device("/cpu:0"):
matrix1=tf.constant([[3.,3.]])
matrix2=tf.constant([[2.],[2.]])
product=tf.matmul(matrix1,matrix2)

 

如果这篇文章帮助到了你,或者你有什么问题,欢迎扫码关注微信公众号:一刻AI  在后台留言即可

四、其他安装过程中遇到的问题(持续更新),也欢迎大家把遇到的问题和解决方式在留言区写出,做一个避坑指南。

1、如何利用镜像安装特定版本的tensorflow

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow==1.12   #CPU版
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow-gpu==1.12  #GPU版

2、No module named 'tensorflow'

(1)各个包的版本不匹配,建议按照我的安装版本进行安装,亲测可行。

(2)在安装时,有些是用Anaconda Prompt通过pip安装,有些是用Anaconda Navigator点击Apply安装,但是这两个的安装有时候会混乱,建议全都利用其中的一个途径安装

配置tensorflow和keras时教程及问题总结的更多相关文章

  1. win10+anaconda安装tensorflow和keras遇到的坑小结

    win10下利用anaconda安装tensorflow和keras的教程都大同小异(针对CPU版本,我的gpu是1050TI的MAX-Q,不知为啥一直没安装成功),下面简单说下步骤. 一 Anaco ...

  2. 在配置tensorflow时踩的无数个坑

    在下午尝试配置tensorflow环境时,遇到了许多天坑,讲真的心态炸了好几次,特此写下这篇记录,希望能给看到朋友一点帮助. 先说一下这抓狂的一天的起因,比赛项目想用SVM进行一下数据分析,除了常规的 ...

  3. conda+豆瓣源配置tensorflow+keras环境

    conda+豆瓣源配置tensorflow+keras环境 安装anaconda 打开Anaconda Prompt 创建虚拟环境 conda create -n myenv python=3.5 a ...

  4. 『TensorFlow2.0正式版』TF2.0+Keras速成教程·零:开篇简介与环境准备

    此篇教程参考自TensorFlow 2.0 + Keras Crash Course,在原文的基础上进行了适当的总结与改编,以适应于国内开发者的理解与使用,水平有限,如果写的不对的地方欢迎大家评论指出 ...

  5. Python玩转人工智能最火框架 TensorFlow应用实践 学习 教程

    随着 TensorFlow 在研究及产品中的应用日益广泛,很多开发者及研究者都希望能深入学习这一深度学习框架.而在昨天机器之心发起的框架投票中,2144 位参与者中有 1441 位都在使用 Tenso ...

  6. Tensorflow 2.x入门教程

    前言 至于为什么写这个教程,首先是为了自己学习做个记录,其次是因为Tensorflow的API写的很好,但是他的教程写的太乱了,不适合新手学习.tensorflow 1 和tensorflow 2 有 ...

  7. Anaconda安装tensorflow和keras(gpu版,超详细)

    本人配置:window10+GTX 1650+tensorflow-gpu 1.14+keras-gpu 2.2.5+python 3.6,亲测可行 一.Anaconda安装 直接到清华镜像网站下载( ...

  8. windows安装TensorFlow和Keras遇到的问题及其解决方法

    安装TensorFlow在Windows上,真是让我心力交瘁,想死的心都有了,在Windows上做开发真的让人发狂. 首先说一下我的经历,本来也就是起初,网上说python3.7不支持TensorFl ...

  9. Windows服务器安装配置PHP7.0环境图文教程

    摘自http://www.111cn.net/phper/linux-php/109865.htm Windows服务器安装配置PHP7.0环境图文教程 www.111cn.net 更新:2016-0 ...

随机推荐

  1. Trie树(字典树)推荐文章

    Trie树也被称为字典树,通过这个名字,可以明显知道这种树的结构:像字典一样进行查找的树(想想采用拼音法查找汉字的时候的过程,实质上就是一个逐字母匹配的过程).Trie树就是利用了这种思想构造出来的多 ...

  2. php框架之thinkphp

    日常开发中经常使用thinkphp5进行开发工作,总结一些使用中遇到的问题和使用的东西 1. web内置服务 V5.1.5+版本开始,增加了启动内置服务器的指令,方便测试 >php think ...

  3. 入坑MATLAB必会的吐血总结

    本渣想回过头来整理一下MATLAB的一些基本的知识(很多东西比较琐碎,应该系统的梳理梳理),下文中没有提到的,自己用help查即可. 此文用来存个档,便于回顾. 由于matlab各版本部分语法存在差异 ...

  4. Java 获取当前线程、进程、服务器ip

    /** * 获取当前线程id */ private Long getThreadId() { try { return Thread.currentThread().getId(); } catch ...

  5. luogu4365 秘密袭击 (生成函数+线段树合并+拉格朗日插值)

    求所有可能联通块的第k大值的和,考虑枚举这个值: $ans=\sum\limits_{i=1}^{W}{i\sum\limits_{S}{[i是第K大]}}$ 设cnt[i]为连通块中值>=i的 ...

  6. virtualbox+ubuntu

    https://jingyan.baidu.com/article/7f766daff541cd4101e1d0cd.html ubuntu 安装 这台计算机似乎没有安装操作系统 待解决 注意ubun ...

  7. Xcode10 不能导入头文件(导入头文件不提示)

    连接地址:https://blog.csdn.net/wyz670083956/article/details/87774705 xcode10可能是:Project Settings

  8. 93.Restore IP Addresses(M)

    93.Restore IP Addresses Medium 617237FavoriteShare Given a string containing only digits, restore it ...

  9. 基于前后端分离的Nginx+Tomcat动静分离

    1.什么是动静分离 "动"与"静" 在弄清动静分离之前,我们要先明白什么是动,什么是静. 在Web开发中,通常来说,动态资源其实就是指那些后台资源,而静态资源就 ...

  10. beego学习2 控制器与路由

    beego控制器 controller目录新建test.go文件 结构体集成beego.Controller 控制名需大写,否则为私有方法 package controllers import ( & ...