传送门


如果边不会消失,那么显然可以带权并查集做(然后发现自己不会写带权并查集

但是每条边有消失时间。这样每一条边产生贡献的时间对应一段区间,故对时间轴建立线段树,将每一条边扔到线段树对应的点上。

然后遍历整棵线段树,每遍历到一个点将覆盖这个点对应区间的边全部加入带权并查集中,递归到叶子节点输出答案。回溯的时候把在这一个点加入的边从并查集中栈序撤销。

因为需要撤销所以并查集不能使用路径压缩,只能按秩合并。

#include<iostream>
#include<cstdio>
#include<stack>
#include<vector>
//This code is written by Itst
using namespace std;

inline int read(){
    int a = 0;
    char c = getchar();
    while(!isdigit(c))
        c = getchar();
    while(isdigit(c)){
        a = a * 10 + c - 48;
        c = getchar();
    }
    return a;
}

const int MAXN = 1e5 + 7;
int N , M , T;

#define PII pair < int , int >
#define st first
#define nd second
#define mid ((l + r) >> 1)
#define lch (x << 1)
#define rch (x << 1 | 1)
vector < PII > Edge[MAXN << 2];
void addEd(int x , int l , int r , int L , int R , PII Ed){
    if(l >= L && r <= R){
        Edge[x].push_back(Ed);
        return;
    }
    if(mid >= L) addEd(lch , l , mid , L , R , Ed);
    if(mid < R) addEd(rch , mid + 1 , r , L , R , Ed);
}

struct node{
    int fa , val , sz;
}dsu[MAXN];

PII find(int x){
    if(dsu[x].fa == x) return PII(x , 0);
    PII t = find(dsu[x].fa);
    return PII(t.st , t.nd ^ dsu[x].val);
}

void solve(int x , int l , int r , bool f){
    stack < int > stk;
    for(vector < PII > :: iterator t = Edge[x].begin() ; t != Edge[x].end() ; ++t){
        int p = (*t).st , q = (*t).nd;
        PII M = find(p) , N = find(q);
        int m = M.st , n = N.st;
        if(m != n){
            if(dsu[m].sz > dsu[n].sz)
                swap(n , m);
            dsu[n].sz += dsu[m].sz;
            dsu[m].fa = n;
            dsu[m].val = M.nd ^ N.nd ^ 1;
            stk.push(m);
        }
        else
            f &= (M.nd ^ N.nd);
    }
    if(l == r)
        puts(f ? "Yes" : "No");
    else{
        solve(lch , l , mid , f);
        solve(rch , mid + 1 , r , f);
    }
    while(!stk.empty()){
        int t = stk.top(); stk.pop();
        dsu[dsu[t].fa].sz -= dsu[t].sz;
        dsu[t].val = 0; dsu[t].fa = t;
    }
}

int main(){
#ifndef ONLINE_JUDGE
    freopen("in","r",stdin);
    freopen("out","w",stdout);
#endif
    N = read(); M = read(); T = read();
    for(int i = 1 ; i <= M ; ++i){
        int a = read() , b = read() , l = read() , r = read();
        if(l < r)
            addEd(1 , 1 , T , l + 1 , r , PII(a , b));
    }
    for(int i = 1 ; i <= N ; ++i){
        dsu[i].fa = i;
        dsu[i].sz = 1;
    }
    solve(1 , 1 , T , 1);
    return 0;
}

BZOJ4025 二分图 线段树分治、带权并查集的更多相关文章

  1. [BZOJ 4025]二分图(线段树分治+带边权并查集)

    [BZOJ 4025]二分图(线段树分治+带边权并查集) 题面 给出一个n个点m条边的图,每条边会在时间s到t出现,问每个时间的图是否为一个二分图 \(n,m,\max(t_i) \leq 10^5\ ...

  2. UVA - 10004 Bicoloring(判断二分图——交叉染色法 / 带权并查集)

    d.给定一个图,判断是不是二分图. s.可以交叉染色,就是二分图:否则,不是. 另外,此题中的图是强连通图,即任意两点可达,从而dfs方法从一个点出发就能遍历整个图了. 如果不能保证从一个点出发可以遍 ...

  3. bzoj4025二分图(线段树分治 并查集)

    /* 思维难度几乎没有, 就是线段树分治check二分图 判断是否为二分图可以通过维护lct看看是否链接出奇环 然后发现不用lct, 并查集维护奇偶性即可 但是复杂度明明一样哈 */ #include ...

  4. [BZOJ4025]二分图(线段树分治,并查集)

    4025: 二分图 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2191  Solved: 800[Submit][Status][Discuss] ...

  5. BZOJ4025 二分图 分治 并查集 二分图 带权并查集按秩合并

    原文链接http://www.cnblogs.com/zhouzhendong/p/8683831.html 题目传送门 - BZOJ4025 题意 有$n$个点,有$m$条边.有$T$个时间段.其中 ...

  6. BZOJ 2333 棘手的操作(离线+线段树+带权并查集)

    这题搞了我一天啊...拍不出错原来是因为极限数据就RE了啊,竟然返回WA啊.我的线段树要开8倍才能过啊... 首先可以发现除了那个加边操作,其他的操作有点像线段树啊.如果我们把每次询问的联通块都放在一 ...

  7. hdu 1829 &amp;poj 2492 A Bug&#39;s Life(推断二分图、带权并查集)

    A Bug's Life Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) To ...

  8. CodeForces - 687D: Dividing Kingdom II (二分图&带权并查集)

    Long time ago, there was a great kingdom and it was being ruled by The Great Arya and Pari The Great ...

  9. How Many Answers Are Wrong (HDU - 3038)(带权并查集)

    题目链接 并查集是用来对集合合并查询的一种数据结构,或者判断是不是一个集合,本题是给你一系列区间和,判断给出的区间中有几个是不合法的. 思考: 1.如何建立区间之间的联系 2.如何发现悖论 首先是如何 ...

随机推荐

  1. curl 错误总结

    证书域名与访问的域名不一致 问题:curl SSL: certificate subject name 'luffichen_server.tencent.com' does not match ta ...

  2. 【野草】SQL Server之索引解析(二)

    1.堆表 堆表通过IAM连接一起,查询时全表扫描. 1.1 非聚集索引 结构 叶子节点数据结构:行数据结构+Rid(8字节) 中间节点数据结构: (非聚集非唯一索引)行数据结构+Page(4)+2+ ...

  3. webpack4.0各个击破(4)—— Javascript & splitChunk

    目录 一. Js模块化开发 二. Js文件的一般打包需求 三. 使用webpack处理js文件 3.1 使用babel转换ES6+语法 3.2 脚本合并 3.3 公共模块识别 3.4 代码分割 3.5 ...

  4. C#组件系列——又一款日志组件:Elmah的学习和分享

    前言:好久没动笔了,都有点生疏,12月都要接近尾声,可是这月连一篇的产出都没有,不能坏了“规矩”,今天还是来写一篇.最近个把月确实很忙,不过每天早上还是会抽空来园子里逛逛.一如既往,园子里每年这个时候 ...

  5. [转]nodeJs--koa2 REST API

    本文转自:https://blog.csdn.net/davidPan1234/article/details/83413958 REST API规范编写REST API,实际上就是编写处理HTTP请 ...

  6. MySQL 笔记整理(9) --普通索引和唯一索引,应该怎么选择?

    笔记记录自林晓斌(丁奇)老师的<MySQL实战45讲> (本篇内图片均来自丁奇老师的讲解,如有侵权,请联系我删除) 9) --普通索引和唯一索引,应该怎么选择? 假如你在维护一个市民系统, ...

  7. php-fpm 的优化

    pid = /usr/local/php/var/run/php-fpm.pid error_log = /usr/local/php/var/log/php-fpm.log log_level = ...

  8. Java学习笔记之——线程的生命周期、线程同步

    一. 线程的生命周期 新建(new Thrad):创建线程后,可以设置各个属性值,即启动前 设置 就绪(Runnable):已经启动,等待CPU调动 运行(Running):正在被CPU调度 阻塞(B ...

  9. 后端开发者的Vue学习之路(二)

    目录 上篇内容回顾: 数据绑定 表单输入框绑定 单行文本输入框 多行文本输入框 复选框checkbox 单选框radio 选择框select 数据绑定的修饰符 .lazy .number .trim ...

  10. arcgis api 3.x for js 入门开发系列七图层控制(附源码下载)

    前言 关于本篇功能实现用到的 api 涉及类看不懂的,请参照 esri 官网的 arcgis api 3.x for js:esri 官网 api,里面详细的介绍 arcgis api 3.x 各个类 ...