洛谷 P1226 【模板】快速幂||取余运算
洛谷 P1226 【模板】快速幂||取余运算
题目链接
https://www.luogu.org/problemnew/show/P1226
题目描述
输入b,p,k的值,求b^p mod k的值。其中b,p,k*k为长整型数。
输入输出格式
输入格式:
三个整数b,p,k.
输出格式:
输出“b^p mod k=s”
s为运算结果
输入输出样例
输入样例#1:
2 10 9
输出样例#1:
2^10 mod 9=7
这道题有各种各样的做法,来整理一下几种思路吧
做法1(来自一本通)
思路
1.本题主要的难点在于数据规模很大(b,p都是长整型数),对于\(b^p\)显然不能死算,那样的话时间复杂度和编程复杂度都很大。
2.下面先介绍一个原理:A*B%K = (A%K )*(B% K )%K。显然有了这个原理,就可以把较大的幂分解成较小的,因而免去高精度计算等复杂过程。那么怎样分解最有效呢?
3.显然对于任何一个自然数P,有P=2 * P/2 + P%2,如19=2 * 19/2 + 19%2=2*9+1,利用上述原理就可以把B的19次方除以K的余数转换为求B的9次方除以K的余数,即B19=B2*9+1=B*B9*B9,再进一步分解下去就不难求得整个问题的解。
(额外提一点,最后输出的时候也不要忘记再取模一下,因为没取模我WA了一个点)
代码
#include<bits/stdc++.h>
using namespace std;
long long b,p,k,a;
long long f(long long p){
if(p==0)return 1;
long long tmp=f(p/2)%k;
tmp=(tmp*tmp)%k;
if(p%2==1)tmp=(tmp*b)%k;
return tmp;
}
int main(){
scanf("%lld%lld%lld",&b,&p,&k);
long long tmpb=b;
b%=k;
printf("%lld^%lld mod %lld=%lld\n",tmpb,p,k,f(p)%k);
return 0;
}
做法二
思路
首先要知道,余数是有规律的,除以任何数都是这样
拿样例来说吧,
b=2,p=10,k=9
2^1=2 2%9=2
2^2=4 4%9=4
2^3=8 8%9=8
2^4=16 16%9=7
2^5=32 32%9=5
2^6=64 64%9=1
2^7=128 128%9=2
我们会发现,余数到27的时候就已经跟21重复了 每一个数都是一样的
将重复的次数算出,最后在重算一次,就可以找到答案
注意:
1.不能用数组存余数,空间承受不起
2.一边乘一边除,否则会死得很惨
代码
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
long long b,p,k,s,t;
int main()
{
cin>>b>>p>>k;
cout<<b<<"^"<<p<<" mod "<<k<<"=";
s=b%k;
t=1;
for (int i=2;i<=p;i++)
{
s=s*b%k;
if (s==b%k) break;
t++;
}
p=p%t;s=1;
if (p==0) p=t;
for (int i=1;i<=p;i++)
s=s*b%k;
cout<<s;
return 0;
}
(来自洛谷)
做法三
思路
直接使用常规的快速幂算法
所谓的快速幂,实际上是快速幂取模的缩写,简单的说,就是快速的求一个幂式的模(余)。在程序设计过程中,经常要去求一些大数对于某个数的余数,为了得到更快、计算范围更大的算法,产生了快速幂取模算法。
代码
#include<bits/stdc++.h>
#define int long long
using namespace std;
int power(int b,int p,int k);
int b,p,k;
signed main() {
cin>>b>>p>>k;
int www=p;
cout<<b<<"^"<<www<<" mod "<<k<<"="<<power(b,p,k)%k;
}
int power(int b,int p,int k) {
int ans=1;
b%=k;
while(p) {
if(p&1)
ans=(ans*b)%k;
p>>=1;
b=(b*b)%k;
}
return ans;
}
洛谷 P1226 【模板】快速幂||取余运算的更多相关文章
- 洛谷P1226 【模板】快速幂||取余运算
题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出“b^p mod k=s” s为运算结果 S1: ...
- LuoguP1226 【模板】快速幂||取余运算
题目链接:https://www.luogu.org/problemnew/show/P1226 第一次学快速幂,将别人对快速幂原理的解释简要概括一下: 计算a^b时,直接乘的话计算次数为b,而快速幂 ...
- 洛谷 P1226 【模板】快速幂||取余运算 题解
Analysis 快速幂模板,注意在最后输出时也要取模. 快速幂模板 inline ll ksm(ll x,ll y) { ll ans=; ) { ) { ans*=x; ans%=k; } x*= ...
- 【洛谷P1226 【模板】快速幂||取余运算】
题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出“b^p mod k=s” s为运算结果 作为初 ...
- (分治法 快速幂)P1226 【模板】快速幂||取余运算 洛谷
题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出“b^p mod k=s” s为运算结果 输入输 ...
- [每日一题2020.06.15]P1226 【模板】快速幂取余运算
我是题目 快速幂就是快速求 \(a^b\)的一种算法 快速幂 思想 : 比如我要求 \(6^9\) 首先将幂转化为二进制形式 : \[6^9 = 6^{1001} \tag{1} \] 可以得到 : ...
- P1226 【模板】快速幂||取余运算
https://www.luogu.org/problemnew/show/P1226 模板题 直接上代码吧 #include<bits/stdc++.h> using namespace ...
- 1226 快速幂 取余运算 洛谷luogu
还记得 前段时间学习二进制快速幂有多崩溃 当然这次方法略有不同 居然轻轻松松的 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整 ...
- 题解 P1226 【【模板】快速幂||取余运算】
1.题目分析 原题 本题在于快速幂的使用,以及对long long的应用问题. 2.解题思路 快速幂 求幂常见用法: int pow(int a,int b) { int ans; for(int i ...
随机推荐
- Linux内核使用浮点运算问题
上一篇博文中 电池温度检测原理和示例代码 ,由于驱动要使用对数函数而从网上参看一个实现 double ln(double a) { ; int k,nk; double x,xx,y; x = (a- ...
- mongos-sharding连接池配置
ShardingTaskExecutorPoolMaxSize Maximum number of outbound connections each TaskExecutor connection ...
- 设计模式总结篇系列:组合模式(Composite)
在探讨Java组合模式之前,先要明白几个概念的区别:继承.组合和聚合. 继承是is-a的关系.组合和聚合有点像,有些书上没有作区分,都称之为has-a,有些书上对其进行了较为严格区分,组合是conta ...
- JDK源码分析(5)之 HashMap 相关
HashMap作为我们最常用的数据类型,当然有必要了解一下他内部是实现细节.相比于 JDK7 在JDK8 中引入了红黑树以及hash计算等方面的优化,使得 JDK8 中的HashMap效率要高于以往的 ...
- ASP.NET MVC ETag & Cache等优化方法
背景 最近有一个项目是用SmartAdmin + Jquery + EasyUI 一个ASP.NET MVC5的项目,一直存在一个性能问题,加载速度比较慢,第一次加载需要(在没有cache的情况下)需 ...
- 四种途径提高RabbitMQ传输数据的可靠性(二)
前言 上一篇四种途径提高RabbitMQ传输消息数据的可靠性(一)已经介绍了两种方式提高数据可靠性传输的方法,本篇针对上一篇中提出的问题(1)与问题(2)提出解决常用的方法. 本文其实也就是结合以上四 ...
- xamarin.forms之page
最近在使用xamarin.forms做APP开发,之前做过ios的应用,虽然没做过安卓,但之前也有一点了解,什么四大组件五大布局啥的,微软的xamarin.forms的文档也挺详细的,基本都是复制粘贴 ...
- 第45章 工具 - Identity Server 4 中文文档(v1.0.0)
该IdentityServerTools是为IdentityServer编写扩展代码时,你可能需要有效的内部工具的集合.要使用它,请将其注入代码,例如控制器: public MyController( ...
- 【转载】C#代码开发过程中如何快速比较两个文件夹中的文件的异同
在日常的使用电脑的过程中,有时候我们需要比较两个文件夹,查找出两个文件夹中不同的文件以及文件中不同的内容信息,进行内容的校对以及合并等操作.其实使用Beyond Compare软件即可轻松比较,Bey ...
- Dynamics Customer Engagement V9版本配置面向Internet的部署时候下一步按钮不可点击的解决办法
微软动态CRM专家罗勇 ,回复299或者20190120可方便获取本文,同时可以在第一间得到我发布的最新博文信息,follow me!我的网站是 www.luoyong.me . Dynamics 3 ...