花园【SCOI2017期望DP入门题】
题目描述:
小 A 的花园的长和宽分别是 L,H 。小 A 喜欢在花园里做游戏。每次做游戏的时候,他都先把花园均匀分割成 L×H 个小方块,每个方块的长和宽都是 1 。然后,小 A 会从花园的西北角的小方块出发,按照一定的规则移动,在到达花园东南角的小方块时结束游戏。每次行动时,他都会移动到当前所在的小方块的东面或南面相邻的小方块上。如果小 A 当前在从北向南数第 i 块,从西向东数第 j 块小方块上,他向东移动的概率是 Pij ,向南移动的概率则是 1-Pij 。
在花园里做游戏常常会弄脏衣服,花园的每个小方块内都有一定的不干净度,用 Dij 表示。而一次游戏结束后,小 A 总的不干净度就是他经过的所有格子中不干净度之和(起点和终点的不干净度也计算在内)。
小 B 因为小 A 经常把衣服弄脏感到苦恼,他可能会决定在小 A 做游戏前对花园进行一次打扫。小 B 在打扫花园时,会从花园的西北角的小方块出发,每次移动到当前所在的小方块的东面或南面相邻的小方块上,在到达花园的东南角时结束打扫,他经过的所有的格子的不干净度都会变为 0 。现在,小 B 想知道,在他选择了最优的打扫策略的情况下,小 A 做完游戏后总不干净度之和是多少?
输入格式:
第一行输入两个空格隔开的正整数 L、H。
第二行一个整数 k,值为 0 或 1 ,k=0 表示小B不会打扫花园,k=1 表示小B会在游戏开始前打扫花园。
接下来 L 行,每行有 H 个自然数,第 i 行第 j 个数表示从北往南数第 i 个,从西往东数第 j 个小方块的不干净度 Dij 。
接下来 L 行,每行有 H 个实数,第 i 行第 j 个数表示从北往南数第 i 个,从西往东数第 j 个小方块的参数 Pij 。
输出格式:
输出一个整数,表示问题的答案,四舍五入保留到整数。
INPUT
3 3
1
200 100 100
200 100 300
100 200 300
0.2 0.8 0.0
0.8 0.3 0.0
1.0 1.0 1.0
OUTPUT
161
题目分析:
期望概率\(dp\),学这个的时候对期望概率理解得还不深刻基本没理解好吧,所以不懂的地方很多,可能讲得比较细
遇到期望概率\(dp\):

(来自\(linners\))
首先我们很明显可以想到的是,每个节点的状态是可以从它左边和上面转移过来的。想到这一点,状态转移方程就好设计了。
容易有\(f[i][j] = f[i - 1][j] * (1 - p[i - 1][j]) + f[i][j - 1] * p[i][j - 1]\),然后这个\(f\)数组处理出来的是概率,每次把不干净值乘上去再累加到\(ans\)上并一直递推下去
然后发现,如果没有小\(B\)这个人的话,其实我们的问题就已经搞定了所以为什么小B这么事儿多,直接输出
如果有的话,考虑在期望图上再做一次\(dp\)记录转移过来的当前最长链并累加起来,最后在答案上减去即可
这里说一下为什么要在期望图上做\(dp\)而非在原不干净值的图上做\(dp\)(对这个理解不深刻,卡的很久):
如果在原图上做\(dp\),相当于忽略了期望带来的影响。形象地讲,假设我们打扫了一个很脏很脏的格子,然后这个人有百万分之一的概率去踩这个格子
……那我可打扫个毛线啊!不如打扫一个相对比较脏,踩的几率更大的格子
而期望的本质是每种事件发生对答案贡献的加权平均,在期望图(即贡献的加权平均图上)跑一遍\(dp\)找出小\(B\)清理的最优策略,这个最优策略本质上是对答案影响最大(减少最多)的贡献的加权平均,不然数学意义都不一样怎么相减呢。
代码:
#include<bits/stdc++.h>
#define N (1000 + 5)
using namespace std;
inline int read() {
int cnt = 0, f = 1; char c = getchar();
while (!isdigit(c)) {if (c == '-') f = -f; c = getchar();}
while (isdigit(c)) {cnt = (cnt << 3) + (cnt << 1) + c - '0'; c = getchar();}
return cnt * f;
}
int l, h, k;
double c[N][N], f[N][N], p[N][N];
int d[N][N];
double sum;
signed main(){
memset(c, 0, sizeof(c));memset(p, 0, sizeof(p));
memset(f, 0, sizeof(f));memset(d, 0, sizeof(d));
l = read(), h = read(), k = read();
for (register int i = 1; i <= l; i++)
for (register int j = 1; j <= h; j++)
d[i][j] = read();
for (register int i = 1; i <= l; i++)
for (register int j = 1; j <= h; j++)
scanf("%lf", &p[i][j]);
sum = d[1][1];
c[1][1] = d[1][1];
f[1][1] = 1;
for (register int i = 1; i <= l; i++)
for (register int j = 1; j <= h; j++) {
if (i == 1 && j == 1) continue;
f[i][j] = f[i - 1][j] * (1 - p[i - 1][j]) + f[i][j - 1] * p[i][j - 1];
c[i][j] = f[i][j] * d[i][j];
c[i][j] += max(c[i - 1][j], c[i][j - 1]);
sum += f[i][j] * d[i][j];
}
if (!k) return printf("%.0lf",sum), 0;
printf("%.0lf", sum - c[l][h]);
return 0;
}
花园【SCOI2017期望DP入门题】的更多相关文章
- 2018.08.30 花园(期望dp)
题目背景 SCOI2017 DAY2 T1 题目描述 小 A 的花园的长和宽分别是 L,H .小 A 喜欢在花园里做游戏.每次做游戏的时候,他都先把花园均匀分割成 L×H 个小方块,每个方块的长和宽都 ...
- poj 3254 状压dp入门题
1.poj 3254 Corn Fields 状态压缩dp入门题 2.总结:二进制实在巧妙,以前从来没想过可以这样用. 题意:n行m列,1表示肥沃,0表示贫瘠,把牛放在肥沃处,要求所有牛不能相 ...
- 【dp入门题】【跟着14练dp吧...囧】
A HDU_2048 数塔 dp入门题——数塔问题:求路径的最大和: 状态方程: dp[i][j] = max(dp[i+1][j], dp[i+1][j+1])+a[i][j];dp[n][j] = ...
- POJ 2342 树形DP入门题
有一个大学的庆典晚会,想邀请一些在大学任职的人来參加,每一个人有自己的搞笑值,可是如今遇到一个问题就是假设两个人之间有直接的上下级关系,那么他们中仅仅能有一个来參加,求请来一部分人之后,搞笑值的最大是 ...
- (树形DP入门题)Anniversary party(没有上司的舞会) HDU - 1520
题意: 有个公司要举行一场晚会.为了让到会的每个人不受他的直接上司约束而能玩得开心,公司领导决定:如果邀请了某个人,那么一定不会再邀请他的直接的上司,但该人的上司的上司,上司的上司的上司等都可以邀请. ...
- 期望dp好题选做
前言: 最近连考两场期望dp的题目,sir说十分板子的题目我竟然一点也不会,而且讲过以后也觉得很不可改.于是开个坑. 1.晚测10 T2 大佬(kat) 明明有\(O(mlog)\)的写法,但是\(m ...
- HDU 2089 不要62【数位DP入门题】
不要62 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- hdu_Anniversary party_(树形DP入门题)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1520 题意:有N个人,N-1个人有自己的上司,每个人有一个快乐值,如果这个人参加了聚会,那么这个人的直 ...
- HDU3853 LOOPS 期望DP基础题
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3853 题目大意(只是大意,名字什么的可能和原题描述不一样~): 爱丽丝与华容道 题目描述 爱丽丝是一个 ...
随机推荐
- solr +zookeeper+tomcat 集群搭建
最近需要搭建一个cloudSolr集群,写下记录.基础环境是在centos6.5 64bit 3个下载地址: 1. 下载Solr-4.x http://lucene.apache.org/solr/d ...
- 通过Python SDK 获取tushare数据
导入tushare import tushare as ts 这里注意, tushare版本需大于1.2.10 设置token ts.set_token('your token here') 以上方法 ...
- 《数据结构与算法分析——C语言描述》ADT实现(NO.02) : 队列(Queue)
第三个结构——队列(Queue) 队列与上次的栈相反,是一种先进先出(FIFO)的线性表.写入时只暴露尾部,读取时只暴露头部. 本次只实现了数组形式的队列.原因是链表形式的队列极为简单,只需要实现简单 ...
- Ubuntu 最简单的方式安装chrome
1.指定安装目录如下: cd opt/ 2.下载包: sudo wget https://dl.google.com/linux/direct/google-chrome-stable_current ...
- ionic js ion-tabs选项卡栏操作
ionic 选项卡栏操作 ion-tabs ion-tabs 是有一组页面选项卡组成的选项卡栏.可以通过点击选项来切换页面. 对于 iOS,它会出现在屏幕的底部,Android会出现在屏幕的顶部(导航 ...
- CSIC_716_20191028【爬小破站】
1.爬取小破站的弹幕 2.展示爬取内容 打开网页,用教的方法找到cid 和header import requests from bs4 import BeautufulSoup import pan ...
- gradle 随记
gradle项目下添加jar包 compile fileTree(dir: './src/main/resources/lib', include: '*.jar') 将jar包放到这个目录下./sr ...
- Gamma(1)
目前为止看到的解释Gamma来由说得最清楚的一篇文章:https://www.cambridgeincolour.com/tutorials/gamma-correction.htm 几点总结. 1, ...
- 校园商铺-2项目设计和框架搭建-10验证controller
1.新建package:com.csj2018.o2o.web.superadmin 2.建立AreaController.java package com.csj2018.o2o.web.super ...
- C++——运算符重载
运算符重载编程基础 例如: //全局函数 完成 +操作符 重载 Complex operator+(Complex &c1, Complex &c2) //类成员函数 完成 -操作符 ...