P3106 [USACO14OPEN]GPS的决斗Dueling GPS's

题意

题目描述

Farmer John has recently purchased a new car online, but in his haste he accidentally clicked the "Submit" button twice when selecting extra features for the car, and as a result the car ended up equipped with two GPS navigation systems! Even worse, the two systems often make conflicting decisions about the route that FJ should take.

The map of the region in which FJ lives consists of \(N\) intersections ($2 \leq N \leq 10,000$) and \(M\) directional roads ($1 \leq M \leq 50,000$). Road \(i\) connects intersections \(A_i(1 \leq A_i \leq N)\) and \(B_i(1 \leq B_i \leq N)\). Multiple roads could connect the same pair of intersections, and a bi-directional road (one permitting two-way travel) is represented by two separate directional roads in opposite orientations. FJ's house is located at intersection $1$, and his farm is located at intersection \(N\). It is possible to reach the farm from his house by traveling along a series of directional roads.

Both GPS units are using the same underlying map as described above; however, they have different notions for the travel time along each road. Road \(i\) takes \(P_i\) units of time to traverse according to the first GPS unit, and \(Q_i\) units of time to traverse according to the second unit (each travel time is an integer in the range $1 \cdots 100,000$).

FJ wants to travel from his house to the farm. However, each GPS unit complains loudly any time FJ follows a road (say, from intersection \(X\) to intersection \(Y\)) that the GPS unit believes not to be part of a shortest route from X to the farm (it is even possible that both GPS units can complain, if FJ takes a road that neither unit likes).

Please help FJ determine the minimum possible number of total complaints he can receive if he chooses his route appropriately. If both GPS units complain when FJ follows a road, this counts as \(+2\) towards the total.

给你一个$N$个点的有向图,可能有重边.

有两个$GPS$定位系统,分别认为经过边$i$的时间为$P_i$和$Q_i$.

每走一条边的时候,如果一个系统认为走的这条边不是它认为的最短路,就会受到警告一次$T$

两个系统是分开警告的,就是说当走的这条边都不在两个系统认为的最短路范围内,就会受到$2$次警告.

如果边$(u,v)$不在$u$到$n$的最短路径上,这条边就受到一次警告,求从$1$到$n$最少受到多少次警告。

输入输出格式

输入格式:

Line $1$: The integers \(N\) and \(M\).

Line \(i\) describes road \(i\) with four integers: \(A_i \ B_i \ P_i \ Q_i\).

输出格式:

Line $1$: The minimum total number of complaints FJ can receive if he routes himself from his house to the farm optimally.

输入输出样例

输入样例:

5 7
3 4 7 1
1 3 2 20
1 4 17 18
4 5 25 3
1 2 10 1
3 5 4 14
2 4 6 5

输出样例:

1

说明

There are $5$ intersections and $7$ directional roads. The first road connects from intersection $3$ to intersection $4$; the first GPS thinks this road takes $7$ units of time to traverse, and the second GPS thinks it takes $1$ unit of time, etc.

If FJ follows the path $1$ → $2$ → $4$ → $5$, then the first GPS complains on the $1$ → $2$ road (it would prefer the $1$ → $3$ road instead). However, for the rest of the route $2$ → $4$ → $5$, both GPSs are happy, since this is a shortest route from $2$ to $5$ according to each GPS.

思路

太fAKe了。 --Mercury

我们发现,无论走到哪个点,$GPS$的警告都是使用到终点$n$的最短路径来判断的,所以我们先预处理出两台$GPS$到终点$n$的最短路长度$dis1,dis2$,这可以用反向跑最短路来实现。然后对于一条边$(u,v)$,如果$dis1[u]+len1(u,v)==dis1[v]$,那么第一台$GPS$是不会警告的;同样,如果$dis2[u]+len2(u,v)==dis2[v]$,那么第二台$GPS$是不会警告的。那么我们以此来改变每条边的边权为$GPS$警告的次数,然后再跑一遍最短路,就可以得到答案了。

AC代码

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL MAXN=1e4+5;
const LL MAXM=5e4+5;
LL n,m,dis[MAXN],dis1[MAXN],dis2[MAXN];
LL cnt,top[MAXN],to[MAXM],len[MAXM],nex[MAXM];
LL cnt1,top1[MAXN],to1[MAXM],len1[MAXM],nex1[MAXM];
LL cnt2,top2[MAXN],to2[MAXM],len2[MAXM],nex2[MAXM];
bool vis[MAXN];
inline LL read()
{
LL re=0;char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) re=(re<<3)+(re<<1)+ch-'0',ch=getchar();
return re;
}
inline void add_edge(LL x,LL y,LL z){to[++cnt]=y,len[cnt]=z,nex[cnt]=top[x],top[x]=cnt;}
inline void add_edge1(LL x,LL y,LL z){to1[++cnt1]=y,len1[cnt1]=z,nex1[cnt1]=top1[x],top1[x]=cnt1;}
inline void add_edge2(LL x,LL y,LL z){to2[++cnt2]=y,len2[cnt2]=z,nex2[cnt2]=top2[x],top2[x]=cnt2;}
void SPFA()
{
memset(dis,0x3f,sizeof dis);
dis[1]=0;
queue<LL>Q;
Q.push(1);
while(!Q.empty())
{
LL now=Q.front();Q.pop();
vis[now]=false;
for(int i=top[now];i;i=nex[i])
if(dis[to[i]]>dis[now]+len[i])
{
dis[to[i]]=dis[now]+len[i];
if(!vis[to[i]])
{
vis[to[i]]=true;
Q.push(to[i]);
}
}
}
}
void SPFA1()
{
memset(dis1,0x3f,sizeof dis1);
dis1[n]=0;
queue<LL>Q;
Q.push(n);
while(!Q.empty())
{
LL now=Q.front();Q.pop();
vis[now]=false;
for(int i=top1[now];i;i=nex1[i])
if(dis1[to1[i]]>dis1[now]+len1[i])
{
dis1[to1[i]]=dis1[now]+len1[i];
if(!vis[to1[i]])
{
vis[to1[i]]=true;
Q.push(to1[i]);
}
}
}
}
void SPFA2()
{
memset(dis2,0x3f,sizeof dis2);
dis2[n]=0;
queue<LL>Q;
Q.push(n);
while(!Q.empty())
{
LL now=Q.front();Q.pop();
vis[now]=false;
for(int i=top2[now];i;i=nex2[i])
if(dis2[to2[i]]>dis2[now]+len2[i])
{
dis2[to2[i]]=dis2[now]+len2[i];
if(!vis[to2[i]])
{
vis[to2[i]]=true;
Q.push(to2[i]);
}
}
}
}
int main()
{
n=read(),m=read();
while(m--)
{
int x=read(),y=read(),z1=read(),z2=read();
add_edge1(y,x,z1);
add_edge2(y,x,z2);
}
SPFA1(),SPFA2();
for(int i=1;i<=n;i++)
for(int j=top1[i];j;j=nex1[j])
{
int l=2;
if(dis1[to1[j]]==dis1[i]+len1[j]) l--;
if(dis2[to2[j]]==dis2[i]+len2[j]) l--;
add_edge(to1[j],i,l);
}
SPFA();
printf("%lld",dis[n]);
return 0;
}

Luogu P3106 [USACO14OPEN]GPS的决斗Dueling GPS's(最短路)的更多相关文章

  1. BZOJ 3538 == 洛谷 P3106 [USACO14OPEN]GPS的决斗Dueling GPS's

    P3106 [USACO14OPEN]GPS的决斗Dueling GPS's 题目描述 Farmer John has recently purchased a new car online, but ...

  2. 洛谷 3106 [USACO14OPEN]GPS的决斗Dueling GPS's 3720 [AHOI2017初中组]guide

    [题解] 这两道题是完全一样的. 思路其实很简单,对于两种边权分别建反向图跑dijkstra. 如果某条边在某一种边权的图中不是最短路上的边,就把它的cnt加上1.(这样每条边的cnt是0或1或2,代 ...

  3. [USACO14OPEN]GPS的决斗Dueling GPS's

    题目概况 题目描述 给你一个\(N\)个点的有向图,可能有重边. 有两个\(GPS\)定位系统,分别认为经过边\(i\)的时间为\(P_i\),和\(Q_i\). 每走一条边的时候,如果一个系统认为走 ...

  4. 2018.07.22 洛谷P3106 GPS的决斗Dueling GPS's(最短路)

    传送门 图论模拟题. 这题直接写3个(可以压成一个)spfa" role="presentation" style="position: relative;&q ...

  5. USACO Dueling GPS's

    洛谷 P3106 [USACO14OPEN]GPS的决斗Dueling GPS's 洛谷传送门 JDOJ 2424: USACO 2014 Open Silver 2.Dueling GPSs JDO ...

  6. BZOJ3538: [Usaco2014 Open]Dueling GPS

    3538: [Usaco2014 Open]Dueling GPS Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 59  Solved: 36[Subm ...

  7. GPS校时器,GPS时钟装置,NTP网络时间服务器

    GPS校时器,GPS时钟装置,NTP网络时间服务器 GPS校时器,GPS时钟装置,NTP网络时间服务器 GPS校时器,GPS时钟装置,NTP网络时间服务器 GPS校时器,GPS时钟装置,NTP网络时间 ...

  8. 部署-GPS授时系统:GPS授时系统

    ylbtech-部署-GPS授时系统:GPS授时系统 GPS授时系统是针对自动化系统中的计算机.控制装置等进行校时的高科技产品,GPS授时产品它从GPS卫星上获取标准的时间信号,将这些信息通过各种接口 ...

  9. P3106 [USACO14OPEN]GPS的决斗(最短路)

    化简:够简的了.....但是!翻译绝对有锅. 这个最短路是从n到每个点的单源最短路,也就是最短路径树. 那么,思路就很明确了.建两个图,然后跑两边SPFA,记录下最短路径. 然后,对于两点之间的边,如 ...

随机推荐

  1. 6_2.springboot2.x整合Druid和配置数据源监控

    简介 Druid首先是一个数据库连接池.Druid是目前最好的数据库连接池,在功能.性能.扩展性方面,都超过其他数据库连接池,包括DBCP.C3P0.BoneCP.Proxool.JBoss Data ...

  2. 面试系列25 dubbo的spi思想是什么

    spi,简单来说,就是service provider interface,说白了是什么意思呢,比如你有个接口,现在这个接口有3个实现类,那么在系统运行的时候对这个接口到底选择哪个实现类呢?这就需要s ...

  3. nodejs和vuejs的关系

    转自:https://blog.csdn.net/myKurt/article/details/79914078 nodejs类比Java中:JVM 详述: 就前端来说nodejs具有划时代的意义, ...

  4. 【期望DP】[poj2096]Collecting Bugs

    偷一波翻译: 工程师可以花费一天去找出一个漏洞——这个漏洞可以是以前出现过的种类,也可能是未曾出现过的种类,同时,这个漏洞出现在每个系统的概率相同.要求得出找到n种漏洞,并且在每个系统中均发现漏洞的期 ...

  5. 表单单选按钮input[type="radio"]

    <!DOCTYPE html> <html lang="zh"> <head> <title></title> < ...

  6. neo4j 实战、实例、示例 创建电影关系图 -1

    1. 创建关系 因为代码占篇幅太大,创建整个"电源关系图"的代码在文章最下方. 2. 简单分析创建语句 2.1 创建电影节点 CREATE (TheMatrix:Movie {ti ...

  7. 进程外Session---数据库Session的配置

    怎么将Session记录到数据库中呢? 其实微软已经为我们设置好了.只要我们简单的配置一下就行了. 当然也要在 “我的电脑” 鼠标右键--->管理--->服务和应用程序----> 服 ...

  8. 跟我一起学koa之在koa中使用mongoose(四)

    第一步安装mongoose,创建数据库文件夹 第二步引入mongoose,连接数据库 第三步运行项目 这个报错 只需要将es6写法变成es5写法即可 我们连接数据库,并且以post请求的方式插入数据 ...

  9. [转]Visual Studio 2010单元测试(2)--运行测试并查看代码覆盖率

    Visual Studio 2010 单元测试--运行测试并查看代码覆盖率 运行测试并查看代码覆盖率对程序集中的代码运行测试时,可以通过收集代码覆盖率数据来查看正在测试的项目代码部分. 运行测试并查看 ...

  10. Gym - 100543L

    Gym - 100543Lhttps://vjudge.net/problem/153854/origin区间dp,要从区间长度为1开始dp #include<iostream> #inc ...