P3106 [USACO14OPEN]GPS的决斗Dueling GPS's

题意

题目描述

Farmer John has recently purchased a new car online, but in his haste he accidentally clicked the "Submit" button twice when selecting extra features for the car, and as a result the car ended up equipped with two GPS navigation systems! Even worse, the two systems often make conflicting decisions about the route that FJ should take.

The map of the region in which FJ lives consists of \(N\) intersections ($2 \leq N \leq 10,000$) and \(M\) directional roads ($1 \leq M \leq 50,000$). Road \(i\) connects intersections \(A_i(1 \leq A_i \leq N)\) and \(B_i(1 \leq B_i \leq N)\). Multiple roads could connect the same pair of intersections, and a bi-directional road (one permitting two-way travel) is represented by two separate directional roads in opposite orientations. FJ's house is located at intersection $1$, and his farm is located at intersection \(N\). It is possible to reach the farm from his house by traveling along a series of directional roads.

Both GPS units are using the same underlying map as described above; however, they have different notions for the travel time along each road. Road \(i\) takes \(P_i\) units of time to traverse according to the first GPS unit, and \(Q_i\) units of time to traverse according to the second unit (each travel time is an integer in the range $1 \cdots 100,000$).

FJ wants to travel from his house to the farm. However, each GPS unit complains loudly any time FJ follows a road (say, from intersection \(X\) to intersection \(Y\)) that the GPS unit believes not to be part of a shortest route from X to the farm (it is even possible that both GPS units can complain, if FJ takes a road that neither unit likes).

Please help FJ determine the minimum possible number of total complaints he can receive if he chooses his route appropriately. If both GPS units complain when FJ follows a road, this counts as \(+2\) towards the total.

给你一个$N$个点的有向图,可能有重边.

有两个$GPS$定位系统,分别认为经过边$i$的时间为$P_i$和$Q_i$.

每走一条边的时候,如果一个系统认为走的这条边不是它认为的最短路,就会受到警告一次$T$

两个系统是分开警告的,就是说当走的这条边都不在两个系统认为的最短路范围内,就会受到$2$次警告.

如果边$(u,v)$不在$u$到$n$的最短路径上,这条边就受到一次警告,求从$1$到$n$最少受到多少次警告。

输入输出格式

输入格式:

Line $1$: The integers \(N\) and \(M\).

Line \(i\) describes road \(i\) with four integers: \(A_i \ B_i \ P_i \ Q_i\).

输出格式:

Line $1$: The minimum total number of complaints FJ can receive if he routes himself from his house to the farm optimally.

输入输出样例

输入样例:

5 7
3 4 7 1
1 3 2 20
1 4 17 18
4 5 25 3
1 2 10 1
3 5 4 14
2 4 6 5

输出样例:

1

说明

There are $5$ intersections and $7$ directional roads. The first road connects from intersection $3$ to intersection $4$; the first GPS thinks this road takes $7$ units of time to traverse, and the second GPS thinks it takes $1$ unit of time, etc.

If FJ follows the path $1$ → $2$ → $4$ → $5$, then the first GPS complains on the $1$ → $2$ road (it would prefer the $1$ → $3$ road instead). However, for the rest of the route $2$ → $4$ → $5$, both GPSs are happy, since this is a shortest route from $2$ to $5$ according to each GPS.

思路

太fAKe了。 --Mercury

我们发现,无论走到哪个点,$GPS$的警告都是使用到终点$n$的最短路径来判断的,所以我们先预处理出两台$GPS$到终点$n$的最短路长度$dis1,dis2$,这可以用反向跑最短路来实现。然后对于一条边$(u,v)$,如果$dis1[u]+len1(u,v)==dis1[v]$,那么第一台$GPS$是不会警告的;同样,如果$dis2[u]+len2(u,v)==dis2[v]$,那么第二台$GPS$是不会警告的。那么我们以此来改变每条边的边权为$GPS$警告的次数,然后再跑一遍最短路,就可以得到答案了。

AC代码

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL MAXN=1e4+5;
const LL MAXM=5e4+5;
LL n,m,dis[MAXN],dis1[MAXN],dis2[MAXN];
LL cnt,top[MAXN],to[MAXM],len[MAXM],nex[MAXM];
LL cnt1,top1[MAXN],to1[MAXM],len1[MAXM],nex1[MAXM];
LL cnt2,top2[MAXN],to2[MAXM],len2[MAXM],nex2[MAXM];
bool vis[MAXN];
inline LL read()
{
LL re=0;char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) re=(re<<3)+(re<<1)+ch-'0',ch=getchar();
return re;
}
inline void add_edge(LL x,LL y,LL z){to[++cnt]=y,len[cnt]=z,nex[cnt]=top[x],top[x]=cnt;}
inline void add_edge1(LL x,LL y,LL z){to1[++cnt1]=y,len1[cnt1]=z,nex1[cnt1]=top1[x],top1[x]=cnt1;}
inline void add_edge2(LL x,LL y,LL z){to2[++cnt2]=y,len2[cnt2]=z,nex2[cnt2]=top2[x],top2[x]=cnt2;}
void SPFA()
{
memset(dis,0x3f,sizeof dis);
dis[1]=0;
queue<LL>Q;
Q.push(1);
while(!Q.empty())
{
LL now=Q.front();Q.pop();
vis[now]=false;
for(int i=top[now];i;i=nex[i])
if(dis[to[i]]>dis[now]+len[i])
{
dis[to[i]]=dis[now]+len[i];
if(!vis[to[i]])
{
vis[to[i]]=true;
Q.push(to[i]);
}
}
}
}
void SPFA1()
{
memset(dis1,0x3f,sizeof dis1);
dis1[n]=0;
queue<LL>Q;
Q.push(n);
while(!Q.empty())
{
LL now=Q.front();Q.pop();
vis[now]=false;
for(int i=top1[now];i;i=nex1[i])
if(dis1[to1[i]]>dis1[now]+len1[i])
{
dis1[to1[i]]=dis1[now]+len1[i];
if(!vis[to1[i]])
{
vis[to1[i]]=true;
Q.push(to1[i]);
}
}
}
}
void SPFA2()
{
memset(dis2,0x3f,sizeof dis2);
dis2[n]=0;
queue<LL>Q;
Q.push(n);
while(!Q.empty())
{
LL now=Q.front();Q.pop();
vis[now]=false;
for(int i=top2[now];i;i=nex2[i])
if(dis2[to2[i]]>dis2[now]+len2[i])
{
dis2[to2[i]]=dis2[now]+len2[i];
if(!vis[to2[i]])
{
vis[to2[i]]=true;
Q.push(to2[i]);
}
}
}
}
int main()
{
n=read(),m=read();
while(m--)
{
int x=read(),y=read(),z1=read(),z2=read();
add_edge1(y,x,z1);
add_edge2(y,x,z2);
}
SPFA1(),SPFA2();
for(int i=1;i<=n;i++)
for(int j=top1[i];j;j=nex1[j])
{
int l=2;
if(dis1[to1[j]]==dis1[i]+len1[j]) l--;
if(dis2[to2[j]]==dis2[i]+len2[j]) l--;
add_edge(to1[j],i,l);
}
SPFA();
printf("%lld",dis[n]);
return 0;
}

Luogu P3106 [USACO14OPEN]GPS的决斗Dueling GPS's(最短路)的更多相关文章

  1. BZOJ 3538 == 洛谷 P3106 [USACO14OPEN]GPS的决斗Dueling GPS's

    P3106 [USACO14OPEN]GPS的决斗Dueling GPS's 题目描述 Farmer John has recently purchased a new car online, but ...

  2. 洛谷 3106 [USACO14OPEN]GPS的决斗Dueling GPS's 3720 [AHOI2017初中组]guide

    [题解] 这两道题是完全一样的. 思路其实很简单,对于两种边权分别建反向图跑dijkstra. 如果某条边在某一种边权的图中不是最短路上的边,就把它的cnt加上1.(这样每条边的cnt是0或1或2,代 ...

  3. [USACO14OPEN]GPS的决斗Dueling GPS's

    题目概况 题目描述 给你一个\(N\)个点的有向图,可能有重边. 有两个\(GPS\)定位系统,分别认为经过边\(i\)的时间为\(P_i\),和\(Q_i\). 每走一条边的时候,如果一个系统认为走 ...

  4. 2018.07.22 洛谷P3106 GPS的决斗Dueling GPS's(最短路)

    传送门 图论模拟题. 这题直接写3个(可以压成一个)spfa" role="presentation" style="position: relative;&q ...

  5. USACO Dueling GPS's

    洛谷 P3106 [USACO14OPEN]GPS的决斗Dueling GPS's 洛谷传送门 JDOJ 2424: USACO 2014 Open Silver 2.Dueling GPSs JDO ...

  6. BZOJ3538: [Usaco2014 Open]Dueling GPS

    3538: [Usaco2014 Open]Dueling GPS Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 59  Solved: 36[Subm ...

  7. GPS校时器,GPS时钟装置,NTP网络时间服务器

    GPS校时器,GPS时钟装置,NTP网络时间服务器 GPS校时器,GPS时钟装置,NTP网络时间服务器 GPS校时器,GPS时钟装置,NTP网络时间服务器 GPS校时器,GPS时钟装置,NTP网络时间 ...

  8. 部署-GPS授时系统:GPS授时系统

    ylbtech-部署-GPS授时系统:GPS授时系统 GPS授时系统是针对自动化系统中的计算机.控制装置等进行校时的高科技产品,GPS授时产品它从GPS卫星上获取标准的时间信号,将这些信息通过各种接口 ...

  9. P3106 [USACO14OPEN]GPS的决斗(最短路)

    化简:够简的了.....但是!翻译绝对有锅. 这个最短路是从n到每个点的单源最短路,也就是最短路径树. 那么,思路就很明确了.建两个图,然后跑两边SPFA,记录下最短路径. 然后,对于两点之间的边,如 ...

随机推荐

  1. 17.splash_case03

    # python执行lua脚本 import requests from urllib.parse import quote lua = ''' function main(splash) retur ...

  2. JavaScript对象小基础

    对象的简单学习: 1.String对象1:属性     在javascript中可以用单引号,或者双引号括起来的一个字符当作     一个字符对象的实例,所以可以在某个字符串后再加上.去调用Strin ...

  3. assert(断言)

    Python assert(断言)用于判断一个表达式,在表达式条件为 false 的时候触发异常. 语法格式: assert expression 等价于: if not expression: ra ...

  4. USACO 2009 Open Grazing2 /// DP+滚动数组oj26223

    题目大意: 输入n,s:n头牛 s个栅栏 输入n头牛的初始位置 改变他们的位置,满足 1.第一头与最后一头的距离尽量大 2.相邻两头牛之间的距离尽量满足 d=(s-1)/(n-1),偏差不超过1 3. ...

  5. Java编译与反编译命令记录

    1.首先进入java文件所在的地址 1) e:/ 2) dir     (显示所有文件) 3) cd eclipse-workspace 2.使用javac命令编译Test.java文件,得到Test ...

  6. C# 封装首页、上一页、下一月、尾页处理器

    public void BtnPageClickEvent(object sender,string focusForeground,string lostFocusForeground) { But ...

  7. READING | 我是一只IT小小鸟

    “世界是如此的熙熙攘攘,让年轻的心找不到方向,但这些人是不能小看的啊,如果他们开始敲打自己的命令行.” “知之者不如好知者,好之者不如乐之者”,很多IT界的优秀人才都对计算机技术或者IT技术有着浓厚的 ...

  8. python+selenium中webdriver相关资源

    Chrome chrome的webdriver :  http://chromedriver.storage.googleapis.com/index.html chrome的webdriver需要对 ...

  9. 主机入侵防御系统(HIPS)分析

    主机入侵防御系统(Host Intrusion Prevent System,HIPS)是近几年出现并迅速发展的新兴产物,与传统意义的防火墙和杀毒软件不同,它并不具备特征码扫描和主动杀毒等功能,所以想 ...

  10. Solrj demo

    pom.xml <?xml version="1.0" encoding="UTF-8"?> <project xmlns="htt ...