Open-air shopping malls

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2458    Accepted Submission(s):
906

Problem Description
The city of M is a famous shopping city and its
open-air shopping malls are extremely attractive. During the tourist seasons,
thousands of people crowded into these shopping malls and enjoy the
vary-different shopping.

Unfortunately, the climate has changed little by
little and now rainy days seriously affected the operation of open-air shopping
malls—it’s obvious that nobody will have a good mood when shopping in the rain.
In order to change this situation, the manager of these open-air shopping malls
would like to build a giant umbrella to solve this problem.

These
shopping malls can be considered as different circles. It is guaranteed that
these circles will not intersect with each other and no circles will be
contained in another one. The giant umbrella is also a circle. Due to some
technical reasons, the center of the umbrella must coincide with the center of a
shopping mall. Furthermore, a fine survey shows that for any mall, covering half
of its area is enough for people to seek shelter from the rain, so the task is
to decide the minimum radius of the giant umbrella so that for every shopping
mall, the umbrella can cover at least half area of the mall.

 
Input
The input consists of multiple test cases.
The
first line of the input contains one integer T (1<=T<=10), which is the
number of test cases.
For each test case, there is one integer N
(1<=N<=20) in the first line, representing the number of shopping
malls.
The following N lines each contain three integers X,Y,R, representing
that the mall has a shape of a circle with radius R and its center is positioned
at (X,Y). X and Y are in the range of [-10000,10000] and R is a positive integer
less than 2000.
 
Output
For each test case, output one line contains a real
number rounded to 4 decimal places, representing the minimum radius of the giant
umbrella that meets the demands.
 
Sample Input
1
2
0 0 1
2 0 1
 
Sample Output
2.0822
 
Source
 
Recommend
lcy   |   We have carefully selected several similar
problems for you:  3268 3265 3269 3262 3263 
 
题意:给出一些圆,选择其中一个圆的圆心为圆心,然后画一个大圆,要求大圆最少覆盖每个圆的一半面积。求大圆最小时的半径。
 
枚举每个点,用二分求出需要的圆,更新最小值即可。 
其中用到了圆相交面积,可以参考这题: http://www.cnblogs.com/pshw/p/5711251.html
 
附上代码:
 
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define N 25 const double pi = acos(-1.0);
const double EPS = 1e-;
int n; double max(double a,double b)
{
return a>b?a:b;
} double min(double a,double b)
{
return a<b?a:b;
} struct Round
{
double x,y;
double r;
} rr[N],s; double dis(Round a, Round b) ///两点之间的长度
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} double solve(Round a, Round b) ///求两圆相交的面积
{
double d = dis(a, b);
if(d >= a.r + b.r)
return ;
else if(d <= fabs(a.r-b.r))
{
double r = a.r < b.r?a.r : b.r;
return pi * r * r;
}
double ang1 = acos((a.r * a.r + d * d - b.r * b.r) / 2.0 / a.r / d);
double ang2 = acos((b.r * b.r + d * d - a.r * a.r) / 2.0 / b.r / d);
double ret = ang1 * a.r * a.r + ang2 * b.r * b.r - d * a.r * sin(ang1);
return ret;
} bool check(Round s)
{
for(int i=; i<n; i++) ///大圆是否覆盖每个圆的一半面积
{
if(solve(s, rr[i]) * < pi * rr[i].r * rr[i].r)
return false; ///不满足直接返回
}
return true;
} double bin(double l, double r, Round s) ///二分,找出最小圆的半径
{
double mid;
while(fabs(l - r) >= EPS) ///精度划分
{
mid = (l + r) / ;
s.r = mid;
if(check(s)) ///满足返回的说明半径长度足够,有可能可以更短
r=mid;
else ///不满足返回的说明半径长度不够,需要更长
l=mid+EPS;
}
return mid;
} int main()
{
int T,i,j;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(i=; i<n; i++)
scanf("%lf%lf%lf",&rr[i].x,&rr[i].y,&rr[i].r);
double ans = 1e10;
for(i=; i<n; i++)
{
s.x = rr[i].x;
s.y = rr[i].y;
double right = ;
for(j=; j<n; j++)
{
right = max(right, dis(s, rr[j]) + rr[j].r);
///以当前点为圆心,找出可以覆盖所有的圆面积的最长半径
}
ans = min(ans, bin(, right, s)); ///二分搜索,记录最小的圆的半径
}
printf("%.4f\n", ans);
}
return ;
}

hdu 3264 Open-air shopping malls(圆相交面积+二分)的更多相关文章

  1. hdu 3264 09 宁波 现场 E - Open-air shopping malls 计算几何 二分 圆相交面积 难度:1

    Description The city of M is a famous shopping city and its open-air shopping malls are extremely at ...

  2. hdu5858 Hard problem(求两圆相交面积)

    题目传送门 Hard problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  3. HDU 3264 Open-air shopping malls (计算几何-圆相交面积)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=3264 题意:给你n个圆,坐标和半径,然后要在这n个圆的圆心画一个大圆,大圆与这n个圆相交的面积必须大于等 ...

  4. [hdu 3264] Open-air shopping malls(二分+两圆相交面积)

    题目大意是:先给你一些圆,你可以任选这些圆中的一个圆点作圆,这个圆的要求是:你画完以后.这个圆要可以覆盖之前给出的每一个圆一半以上的面积,即覆盖1/2以上每一个圆的面积. 比如例子数据,选左边还是选右 ...

  5. HDU 3467 (求五个圆相交面积) Song of the Siren

    还没开始写题解我就已经内牛满面了,从晚饭搞到现在,WA得我都快哭了呢 题意: 在DotA中,你现在1V5,但是你的英雄有一个半径为r的眩晕技能,已知敌方五个英雄的坐标,问能否将该技能投放到一个合适的位 ...

  6. hdu 5120(2014北京—求圆相交)

    题意:求环的相交面积 思路: 通过画图可知,面积= 大圆相交面积 - 大小圆相交面积*2 + 小小圆相交面积  再通过圆相交模板计算即可 #include <iostream> #incl ...

  7. 【HDU 5858】Hard problem(圆部分面积)

    边长是L的正方形,然后两个半径为L的圆弧和中间直径为L的圆相交.求阴影部分面积. 以中间圆心为原点,对角线为xy轴建立直角坐标系. 然后可以联立方程解出交点. 交点是$(\frac{\sqrt{7} ...

  8. poj2546Circular Area(两圆相交面积)

    链接 画图推公式 这两种情况 都可用一种公式算出来 就是两圆都求出圆心角 求出扇形的面积减掉三角形面积 #include <iostream> using namespace std; # ...

  9. hdu 3264(枚举+二分+圆的公共面积)

    Open-air shopping malls Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

随机推荐

  1. Promise对象和async函数

    Promise对象 //1开始 function fna(){ console.log('1开始'); var p = new Promise(function(resolve, reject){ / ...

  2. js中index()的四种经典用法111

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  3. 安装mysql报错2503

    安装MySQL-5.5.27报这个错误: The installer has encountered an unexpected error installing this package.This ...

  4. 每日算法之三十四:Multiply Strings

    大数相乘,分别都是用字符串表示的两个大数.求相乘之后的结果表示. 首先我们应该考虑一下測试用例会有哪些,先准备測试用例对防御性编程会有比較大的帮助.可以考虑一些极端情况.有以下几种用例: 1)&quo ...

  5. vue 微信内H5调起支付

    在微信内H5调起微信支付,主要依赖于一个微信的内置对象WeixinJSBridge,这个对象在其他浏览器中无效. 主要代码: import axios from 'axios'; export def ...

  6. Leetcode706.Design HashMap设计哈希映射

    不使用任何内建的哈希表库设计一个哈希映射 具体地说,你的设计应该包含以下的功能 put(key, value):向哈希映射中插入(键,值)的数值对.如果键对应的值已经存在,更新这个值. get(key ...

  7. 24种编程语言的Hello World程序

    24种编程语言的Hello World程序 这篇文章主要介绍了 24 种编程语言的 Hello World 程序,包括熟知的 Java.C 语言.C++.C#.Ruby.Python.PHP 等编程语 ...

  8. 【JZOJ4894】【NOIP2016提高A组集训第16场11.15】SJR的直线

    题目描述 数据范围 解法 考虑逐次加入每一条直线. 对于当前已加入的直线集合L,现在要新加入一条直线l. 那么它产生的贡献,与平行线有关. 对于任意三条直线,如果其中任意两条平行,那么将不做贡献. 所 ...

  9. day13 memcache,redis上篇

    memcache memcache简介 Memcached是一个自由开源的,高性能,分布式内存对象缓存系统. Memcached是以LiveJournal旗下Danga Interactive公司的B ...

  10. 使用pip出现 cannot import name "main"

    最近在linux使用pip install时遇到了这个报错 1.jpg ImportError: cannot import name main 遇到这个问题,我的解决办法是:cd 到usr/bin目 ...