题目大意:

https://www.luogu.org/problemnew/show/P3410

题解 https://www.cnblogs.com/2020pengxiyue/p/9463055.html

源点s到各任务的边权为利益

各任务需要的职工到汇点t的边权为花费

当某一任务的 利益>=花费 时,求得的最大流为完成该任务需要的花费(1)

当某一任务的 利益<花费 时,求得的最大流为完成该任务所得的利益(2)

用总的利益减去最大流得到的

对(1)来说得到的是该任务的纯利

对(2)来说得到的是0 即不做该任务

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define LL long long
using namespace std; const int N=; int n,m,w[N],p[N];
vector <int> vec[N]; struct MAXFLOW {
struct NODE { int to,cap,rev; };
vector <NODE> G[N];
int lev[N], iter[N];
int s,t;
void addE(int u,int v,int cap) {
G[u].push_back((NODE){v,cap,G[v].size()});
G[v].push_back((NODE){u,,G[u].size()-});
}
void BFS(int s) {
memset(lev,-,sizeof(lev));
queue<int>q;
q.push(s); lev[s]=;
while(!q.empty()) {
int u=q.front(); q.pop();
for(int i=;i<G[u].size();i++) {
NODE &v=G[u][i];
if(v.cap> && lev[v.to]<)
lev[v.to]=lev[u]+, q.push(v.to);
}
}
}
int DFS(int u,int t,int f) {
if(u==t) return f;
for(int &i=iter[u];i<G[u].size();i++) {
NODE &v=G[u][i];
if(v.cap> && lev[u]<lev[v.to]) {
int d=DFS(v.to,t,min(f,v.cap));
if(d>) {
v.cap-=d;
G[v.to][v.rev].cap+=d;
return d;
}
}
}
return ;
}
int maxFlow() {
int flow=;
while() {
BFS(s);
if(lev[t]<) return flow;
memset(iter,,sizeof(iter));
while() {
int f=DFS(s,t,INF);
if(f>) flow+=f;
else break;
}
}
}
}F; int main()
{
while(~scanf("%d%d",&n,&m)) {
int sum=, tmp;
for(int i=;i<=n;i++) {
scanf("%d",&p[i]);
sum+=p[i]; vec[i].clear();
while(~scanf("%d",&tmp)&&tmp)
vec[i].push_back(tmp);
}
for(int i=;i<=m;i++) scanf("%d",&w[i]);
int node=n+m;
F.s=+node, F.t=+node;
for(int i=;i<=n;i++) {
F.addE(F.s,i,p[i]);
for(int j=;j<vec[i].size();j++)
F.addE(i,vec[i][j]+n,INF);
}
for(int i=n+;i<=n+m;i++) F.addE(i,F.t,w[i-n]);
printf("%d\n",sum-F.maxFlow());
} return ;
}

P3410 /// 最大流最小割的更多相关文章

  1. hiho 第116周,最大流最小割定理,求最小割集S,T

    小Hi:在上一周的Hiho一下中我们初步讲解了网络流的概念以及常规解法,小Ho你还记得内容么? 小Ho:我记得!网络流就是给定了一张图G=(V,E),以及源点s和汇点t.每一条边e(u,v)具有容量c ...

  2. hihocoder 网络流二·最大流最小割定理

    网络流二·最大流最小割定理 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi:在上一周的Hiho一下中我们初步讲解了网络流的概念以及常规解法,小Ho你还记得内容么? ...

  3. [HihoCoder1378]网络流二·最大流最小割定理

    思路: 根据最大流最小割定理可得最大流与最小割相等,所以可以先跑一遍EdmondsKarp算法.接下来要求的是经过最小割切割后的图中$S$所属的点集.本来的思路是用并查集处理所有前向边构成的残量网络, ...

  4. HDU 1569 方格取数(2)(最大流最小割の最大权独立集)

    Description 给你一个m*n的格子的棋盘,每个格子里面有一个非负数. 从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取数所在的2个格子不能相邻,并且取出的数的和最大.   ...

  5. FZU 1844 Earthquake Damage(最大流最小割)

    Problem Description Open Source Tools help earthquake researchers stay a step ahead. Many geological ...

  6. 【codevs1907】方格取数3(最大流最小割定理)

    网址:http://codevs.cn/problem/1907/ 题意:在一个矩阵里选不相邻的若干个数,使这些数的和最大. 我们可以把它看成一个最小割,答案就是矩阵中的所有数-最小割.先把矩阵按国际 ...

  7. 紫书 例题 11-12 UVa 1515 (最大流最小割)

    这道题要分隔草和洞, 然后刘汝佳就想到了"割"(不知道他怎么想的, 反正我没想到) 然后就按照这个思路走, 网络流建模然后求最大流最小割. 分成两部分, S和草连, 洞和T连 外围 ...

  8. HDU-4289-Control(最大流最小割,拆点)

    链接: https://vjudge.net/problem/HDU-4289 题意: You, the head of Department of Security, recently receiv ...

  9. 牛客暑期第六场G /// 树形DP 最大流最小割定理

    题目大意: 输入t,t个测试用例 每个测试用例输入n 接下来n行 输入u,v,w,树的无向边u点到v点权重为w 求任意两点间的最大流的总和 1.最大流最小割定理 即最大流等于最小割 2.无向树上的任意 ...

随机推荐

  1. python基础【第六篇】

    list列表 基本结构 lst =[1,2,3,5,6] 为什么学列表? 列表能够存储比字符串更多的数据 列表能够存储各种数据类型 列表的注意点 列表是有序的 列表是可变的,支持索引,切片,步 切片后 ...

  2. css3 新特性(动画)

    1. 制作动画 先定义动画,再使用(调用)动画 使用 keyframes(关键帧)定义动画(类似定义类选择器) @keyframes 动画名称{ 0%{ width:100px; } 100%{ wi ...

  3. mysql的一些语法

    alter table S61.T6198 modify  F12 varchar(30) DEFAULT NULL COMMENT '流水号'; 修改表字段结构. mysql不支持top ,只支持l ...

  4. vCenter 6.0 vsca 安装遇到的一些小问题

    在安装vCenter 6.0 vsca的时候,安装插件到第二个的时候,会报出一个windows installer的错误.需要联系软件管理员或者技术支持的一个error. 经过多次的测试,我终于找到了 ...

  5. 安装 sysbench的 报错 /usr/bin/ld: cannot find -lmysqlclient_r 解决办法

    首先你需要找到这个库的位置 一般找的话需要将lib 给加上(注意:我这里是 -lmysqlclient_r 的报错,于是我找就找 libmysqlclient_r ) find / -name lib ...

  6. 2019南昌邀请赛预选赛 I. Max answer (前缀和+单调栈)

    题目:https://nanti.jisuanke.com/t/38228 这题题解参考网上大佬的. 程序的L[i],R[i]代表a[i]这个点的值在区间 [L[i],R[i]] 中最小的并且能拓展到 ...

  7. (二)Django连接本地mysql异常

    Pycharm连接数据库出现错误 管理员身份进入mysql数据库 命令: mysql -u root -p 重新进入mysql 在进入Pycharm发现连接成功

  8. 【JavaWeb项目】一个众筹网站的开发(八)后台页面详细设置

    一.user.jsp改造 删除引入菜单 抽取导航栏 nav-bar.jsp,删除引入导航栏 删除引入main.jsp的到好烂 数据库里添加url 报错,url不对 没有/ url正确 action=& ...

  9. python 获取淘宝商品信息

    python cookie 获取淘宝商品信息 # //get_goods_from_taobao import requests import re import xlsxwriter cok='' ...

  10. 转载 如何理解API,API 是如何工作的

    本文转载于https://blog.csdn.net/cumtdeyurenjie/article/details/80211896 感谢作者 仁杰兄 大家可能最近经常听到 API 这个概念,那什么是 ...