1406: [AHOI2007]密码箱
1406: [AHOI2007]密码箱
Time Limit: 5 Sec Memory Limit: 64 MB
Submit: 1591 Solved: 944
[Submit][Status][Discuss]
Description
密码x大于等于0,且小于n,而x的平方除以n,得到的余数为1。
小可可知道满足上述条件的x可能不止一个,所以一定要把所有满足条件的x计算出来,密码肯定就在其中。计算的过程是很艰苦的,你能否编写一个程序来帮助小可可呢?(题中x,n均为正整数)
Input
Output
Sample Input
Sample Output
5
7
11
/*
找出来所有的 x (0<x<n) x*x%n==1 上式化简一下 (x-1)*(x+1)%n==0
所以 (x-1)*(x+1)的因子必定也是n的因子
那么我们现在sqrt(n)的时间枚举n的因子,枚举到一组:a ,n/a (a是较小的那个) 然后枚举n/a的倍数,判断这个数是x+1,还是
x-1,然后加入答案,最后去重输出
*/
#include <bits/stdc++.h> #define LL long long
#define MAXN 1234567 using namespace std; LL n;
vector<LL>v; inline void init(){
v.clear();
} int main(){
init();
scanf("%lld",&n);
if(n==){
puts("None");
return ;
}
for(LL i=;i*i<=n;i++){
if(n%i==){
LL a=i;
LL b=n/i;
for(LL j=;j<=n;j+=b){
if((j+)%a==&&j+<n) v.push_back(j+);
if((j-)%a==&&j->=) v.push_back(j-);
}
}
}
sort(v.begin(),v.end());
if((int)v.size()==){
return ;
}else{
printf("%lld\n",v[]);
for(int i=;i<(int)v.size();i++){
if(v[i]!=v[i-])
printf("%lld\n",v[i]);
}
}
return ;
}
1406: [AHOI2007]密码箱的更多相关文章
- bzoj 1406: [AHOI2007]密码箱 二次剩餘
1406: [AHOI2007]密码箱 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 701 Solved: 396[Submit][Status] D ...
- BZOJ 1406: [AHOI2007]密码箱( 数论 )
(x+1)(x-1) mod N = 0, 枚举N的>N^0.5的约数当作x+1或者x-1... ------------------------------------------------ ...
- BZOJ 1406: [AHOI2007]密码箱
二次联通门 : BZOJ 1406: [AHOI2007]密码箱 /* BZOJ 1406: [AHOI2007]密码箱 数论 要求 x^2 ≡ 1 (mod n) 可以转换为 x ^ 2 - k * ...
- 【BZOJ】1406: [AHOI2007]密码箱
http://www.lydsy.com/JudgeOnline/problem.php?id=1406 题意:求$0<=x<n, 1<=n<=2,000,000,000, 且 ...
- BZOJ 1406: [AHOI2007]密码箱 exgcd+唯一分解定理
推出来了一个解法,但是感觉复杂度十分玄学,没想到秒过~ Code: #include <bits/stdc++.h> #define ll long long #define N 5000 ...
- BZOJ_1406_[AHOI2007]密码箱_枚举+数学
BZOJ_1406_[AHOI2007]密码箱_枚举+数学 Description 在一次偶然的情况下,小可可得到了一个密码箱,听说里面藏着一份古代流传下来的藏宝图,只要能破解密码就能打开箱子,而箱子 ...
- 洛谷——P4296 [AHOI2007]密码箱
P4296 [AHOI2007]密码箱 密码x大于等于0,且小于n,而x的平方除以n,得到的余数为1. 求这个密码,$1<=n<=2,000,000,000$ 暴力枚举,数据有点儿水$O( ...
- 【BZOJ 1406】 [AHOI2007]密码箱
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] \(x^2%n=1\) \(x^2-1 = k*n\) \((x+1)*(x-1) % n == 0\) 设\(n=a*b\) 对于 ...
- [BZOJ1406][AHOI2007]密码箱(数论)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1406 分析: (x+1)(x-1)是n的倍数 于是可以把n分解成n=ab,则a为(x+ ...
随机推荐
- [并发并行]_[线程模型]_[Pthread线程使用模型之一管道Pipeline]
场景 1.经常在Windows, MacOSX 开发C多线程程序的时候, 经常需要和线程打交道, 如果开发人员的数量不多时, 同时掌握Win32和pthread线程 并不是容易的事情, 而且使用Win ...
- 4 进程间通信Queue [kjuː]
1.进程间通信-Queue Process之间有时需要通信,操作系统提供了很多机制来实现进程间的通信. 说明 初始化Queue()对象时(例如:q=Queue()),若括号中没有指定最大可接收的消息数 ...
- Ajax中post请求和get请求的区别
首先提出两点Post比Get大的不同地方 1.post请求浏览器每次不会缓存,每次都会重新请求,而get请求不要缓存的时候,需要手动设置 写上xhr.setRequestHeader("If ...
- 「国庆训练」Kingdom of Obsession(HDU-5943)
题意 给定\(s,n\),把\(s+1,s+2,...,s+n\)这\(n\)个数填到\(1,2,...,n\)里,要求\(x\)只能填到\(x\)的因子的位置(即题目中\(x\%y=0\)那么x才能 ...
- hdu1848Fibonacci again and again(sg函数)
Fibonacci again and again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Jav ...
- Jmeter接口测试(二)工具介绍
一.Jmeter文件目录介绍 ◆ bin:可执行文件目录 Bin 目录文件 jmeter.bat:windows 的启动文件 jmeter.log:日志文件 jmeter.sh:linux 的启动文件 ...
- selenium自动追踪微信小程序审核方案
小程序随着腾讯的不断推广,变的越来越普及,同时更新迭代的速度也越来越快,种类越来越多,那么在如何保证时效性就显得尤为重要,其中很重要一个环节就在于小程序审核通过之后,能否立刻通知到相关技术人员进行发布 ...
- mysql新手入门随笔4
40.子查询:出现在其他SQL语句里的SELECT语句 例如:SELECT sname,mark FROM student WHERE mark = (SELECT max(mark) FROM st ...
- python程序设计——文件操作
分类 1.文本文件 存储常规字符串,由若干文本行组成,每行以换行符'\n'结尾 2.二进制文件 把对象以字节串存储,常见的图形图像.可执行文件.数据库文件office文档等 #创建文件 >> ...
- 【转】Haml 这货是啥? 附参考
Haml是一种用来描述任何XHTML web document的标记语言,它是干净,简单的.而且也不用内嵌代码.Haml的职能就是替代那些内嵌代码的page page templating syste ...