[CF551E]GukiZ and GukiZiana
题目大意:一个长度为$n(n\leqslant5\times10^5)$的数组,有两个操作:
- $1\;l\;r\;x:$把区间$[l,r]$加上$x$
- $2\;x:$询问$x$第一次出现和最后一次出现之间的距离,若没出现输出$-1$
题解:分块,把每个块排个序(可以把数值为第一关键字,位置为第二关键字),整块的加就块上打$tag$,非整块的就暴力重构,查询就在每个块内求这个数出现位置,直接二分查找就行了。设块大小为$S$,修改复杂度$O(\dfrac n S+2S)$,查询复杂度$O(\dfrac n S\log_2 S)$,$S$略大于$\sqrt n$最好。
卡点:无
C++ Code:
#include <algorithm>
#include <cstdio>
#include <cctype>
namespace IO {
struct istream {
#define M (1 << 24 | 3)
char buf[M], *ch = buf - 1;
inline istream() {
#ifndef ONLINE_JUDGE
freopen("input.txt", "r", stdin);
#endif
fread(buf, 1, M, stdin);
}
inline istream& operator >> (int &x) {
while (isspace(*++ch));
for (x = *ch & 15; isdigit(*++ch); ) x = x * 10 + (*ch & 15);
return *this;
}
inline istream& operator >> (long long &x) {
while (isspace(*++ch));
for (x = *ch & 15; isdigit(*++ch); ) x = x * 10 + (*ch & 15);
return *this;
}
#undef M
} cin;
struct ostream {
#define M (1 << 24 | 3)
char buf[M], *ch = buf - 1;
int w;
inline ostream& operator << (int x) {
if (!x) {
*++ch = '0';
return *this;
}
if (x < 0) *++ch = '-', x = -x;
for (w = 1; w <= x; w *= 10);
for (w /= 10; w; w /= 10) *++ch = (x / w) ^ 48, x %= w;
return *this;
}
inline ostream& operator << (const char x) {*++ch = x; return *this;}
inline ~ostream() {
#ifndef ONLINE_JUDGE
freopen("output.txt", "w", stdout);
#endif
fwrite(buf, 1, ch - buf + 1, stdout);
}
#undef M
} cout;
} #define maxn 500010
const int BSZ = 1 << 10, BNUM = maxn / BSZ + 10; int bel[maxn];
int L[BNUM], R[BNUM];
long long tg[BNUM];
struct node {
long long s;
int id;
inline node() {}
inline node(long long __s, int __id) : s(__s), id(__id) {}
inline node(int __s, int __id) {s = __s, id = __id;}
inline friend bool operator < (const node &lhs, const node &rhs) {
return lhs.s == rhs.s ? lhs.id < rhs.id : lhs.s < rhs.s;
}
} s[maxn]; int n, m, Bnum; int query(const int x) {
int max = 0, min = 0;
for (int i = 1; i <= Bnum; i++) if (tg[i] <= x) {
const int y = x - tg[i];
int l = std::lower_bound(s + L[i], s + R[i], node(y, 0)) - s;
if (l != R[i] && s[l].s == y) {
int r = std::lower_bound(s + L[i], s + R[i], node(y + 1, 0)) - s - 1;
if (!min) min = s[l].id;
max = s[r].id;
}
}
if (!min) return -1;
return max - min;
}
int main() {
IO::cin >> n >> m;
for (int i = 1; i <= n; i++) {
IO::cin >> s[i].s; s[i].id = i;
bel[i] = (i - 1 >> 10) + 1;
} Bnum = bel[n];
for (int i = 1; i <= Bnum; i++) {
L[i] = i - 1 << 10, R[i] = L[i] + BSZ;
}
L[1] = 1, R[Bnum] = n + 1;
for (int i = 1; i <= Bnum; i++) {
std::sort(s + L[i], s + R[i]);
} while (m --> 0) {
int op, l, r, x;
IO::cin >> op >> l;
if (op == 1) {
IO::cin >> r >> x;
const int lb = bel[l], rb = bel[r];
if (lb == rb) {
for (register node *now = s + L[lb]; now != s + R[lb]; ++now) if (l <= now -> id && now -> id <= r) now -> s += x;
std::sort(s + L[lb], s + R[lb]);
} else {
for (register node *now = s + L[lb]; now != s + R[lb]; ++now) if (l <= now -> id) now -> s += x;
std::sort(s + L[lb], s + R[lb]);
for (int i = lb + 1; i < rb; i++) tg[i] += x;
for (register node *now = s + L[rb]; now != s + R[rb]; ++now) if (now -> id <= r) now -> s += x;
std::sort(s + L[rb], s + R[rb]);
}
} else {
IO::cout << query(l) << '\n';
}
}
return 0;
}
[CF551E]GukiZ and GukiZiana的更多相关文章
- Codeforces Round #307 (Div. 2) E. GukiZ and GukiZiana 分块
E. GukiZ and GukiZiana Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/55 ...
- Codeforces 551E - GukiZ and GukiZiana(分块)
Problem E. GukiZ and GukiZiana Solution: 先分成N=sqrt(n)块,然后对这N块进行排序. 利用二分查找确定最前面和最后面的位置. #include < ...
- CF 551E. GukiZ and GukiZiana [分块 二分]
GukiZ and GukiZiana 题意: 区间加 给出$y$查询$a_i=a_j=y$的$j-i$最大值 一开始以为和论文CC题一样...然后发现他带修改并且是给定了值 这样就更简单了.... ...
- Codeforces 551 E - GukiZ and GukiZiana
E - GukiZ and GukiZiana 思路:分块, 块内二分 代码: #pragma GCC optimize(2) #pragma GCC optimize(3) #pragma GCC ...
- Codeforces Round #307 (Div. 2) E. GukiZ and GukiZiana(分块)
E. GukiZ and GukiZiana time limit per test 10 seconds memory limit per test 256 megabytes input stan ...
- Codeforces 551E GukiZ and GukiZiana(分块思想)
题目链接 GukiZ and GukiZiana 题目大意:一个数列,支持两个操作.一种是对区间$[l, r]$中的数全部加上$k$,另一种是查询数列中值为$x$的下标的最大值减最小值. $n < ...
- [codeforces551E]GukiZ and GukiZiana
[codeforces551E]GukiZ and GukiZiana 试题描述 Professor GukiZ was playing with arrays again and accidenta ...
- CodeForces 551E GukiZ and GukiZiana
GukiZ and GukiZiana Time Limit: 10000ms Memory Limit: 262144KB This problem will be judged on CodeFo ...
- Codeforces 307 div2 E.GukiZ and GukiZiana 分块
time limit per test 10 seconds memory limit per test 256 megabytes input standard input output stand ...
随机推荐
- mysql主从集群搭建;(集群复制数据)
1.搭建mysql 5.7环境chown mysql:mysql -R /data/groupadd mysqluseradd -g mysql mysql yum install numactlrp ...
- DSP5509的XF实验-第一篇
1. 使用大道科技的EASY-DSP5509开发板,测试第一个例程,DSP_easy5509\Code-Easy5509\EX01_XF\XF 2. 直接编译,报出错误,在Problems窗口错误指示 ...
- 网站端测试常见BUG
1.翻页 翻页时,没有加载数据为空,第二页数据没有请求 翻页时,重复请求第一页的数据 翻页时,没有图片的内容有时候会引用有图片的内容 2.图片数据为空 图片数据为空时,会保留为空的图片数据位置 3.链 ...
- 第五篇 Flask组件之SQLAchemy及Flask-SQLAlchemy插件/Flask-Script/Flask-migrate/pipreqs模块
SQLAlchemy组件 一. 介绍 SQLAlchemy是一个基于Python实现的ORM框架.该框架建立在 DB API之上,使用关系对象映射进行数据库操作,简言之便是:将类和对象转换成SQL,然 ...
- Linux命令应用大词典-第29章 SELinux管理
29.1 sestaus:显示SElinux的状态 29.2 getenforce:显示当前SELinux的应用模式 29.3 setenforce:修改SELinux的应用模式 29.4 getfa ...
- Java enum类型笔记
用途: 定义命令行参数,菜单选项,星期,方向(东西南北)等 与普通类的不同 有默认的方法 value() 每个enum类都已默认继承java.lang.Enum,所以enum类不能继承其他类 构造方法 ...
- TPO-10 C2 Return a literature book
TPO-10 C2 Return a literature book 第 1 段 1.Listen to a conversation between a student and an employe ...
- 搜索二维矩阵 II
描述 写出一个高效的算法来搜索m×n矩阵中的值,返回这个值出现的次数. 这个矩阵具有以下特性: 每行中的整数从左到右是排序的. 每一列的整数从上到下是排序的. 在每一行或每一列中没有重复的整数. 样例 ...
- Android开发-API指南-<activity>
<activity> 英文原文:http://developer.android.com/guide/topics/manifest/activity-element.html 采集(更新 ...
- 【转载】2015Android 面试题 01
1.如何避免ANR? 答:ANR:Application Not Responding,五秒在Android中,活动管理器和窗口管理器这两个系统服务负责监视应用程序的响应. 当出现下列情况时,Andr ...