BZOJ 1149 风铃(树形DP)
题目描述的实际是一颗二叉树,对于每个结点,要么满叉,要么无叉。
对于一种无解的简单情况,我们搜一遍树找到最浅的叶子结点1和最深的叶子结点2,如果dep[1]<dep[2]-1,则显然无解。
所以现在所有的叶子结点的深度要么是dep[1]和dep[2].
我们可以把所有结点用node[x]标记状态。
node[x]=0表示x的子树下所有叶子结点深度都是dep[2]。
node[x]=1表示x的子树下一部分叶子结点深度是dep[1],一部分是dep[2]。
node[x]=2表示x的子树下所有叶子结点深度都是dep[1]。
现在有,假设x的儿子结点的node值都是1,则一定无解。证明是显然的。
假设x的左儿子结点node值大于右儿子结点的node值,则ans+1,表示需要操作一次。证明也是显然的。
另外node值可以通过一次树形DP得到,所以总复杂度为O(n).
# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int res=, flag=;
char ch;
if((ch=getchar())=='-') flag=;
else if(ch>=''&&ch<='') res=ch-'';
while((ch=getchar())>=''&&ch<='') res=res*+(ch-'');
return flag?-res:res;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... int pos, mi=INF, ma=, node[N*], dep[N*], n, ans, son[N][]; void dfs1(int x)
{
if (x>n) mi=min(mi,dep[x]), ma=max(ma,dep[x]);
else {
dep[son[x][]]=dep[son[x][]]=dep[x]+;
dfs1(son[x][]), dfs1(son[x][]);
}
}
bool dfs2(int x)
{
if (x>n) {
if (dep[x]<ma) node[x]=;
else node[x]=;
}
else {
if (dfs2(son[x][])== || dfs2(son[x][])==) return ;
if(node[son[x][]]==&&node[son[x][]]==) return ;
else if (node[son[x][]]==&&node[son[x][]]==) node[x]=;
else if (node[son[x][]]==&&node[son[x][]]==) node[x]=;
else {
if (node[son[x][]]>node[son[x][]]) ++ans;
node[x]=;
}
}
return ;
}
int main ()
{
int u, v;
scanf("%d",&n);
pos=n;
FOR(i,,n) {
scanf("%d%d",&u,&v);
if (u==-) u=++pos;
if (v==-) v=++pos;
son[i][]=u, son[i][]=v;
}
dfs1();
if (mi<ma-||dfs2()==) puts("-1");
else printf("%d\n",ans);
return ;
}
BZOJ 1149 风铃(树形DP)的更多相关文章
- bzoj 1369: Gem 树形dp
		题目大意 给出一棵树,要求你为树上的结点标上权值,权值可以是任意的正整数 唯一的限制条件是相临的两个结点不能标上相同的权值,要求一种方案,使得整棵树的总价值最小.N<=10000 题解 我们可以 ... 
- 【BZOJ 3090】 树形DP
		3090: Coci2009 [podjela] Description 有 N 个农民, 他们住在 N 个不同的村子里. 这 N 个村子形成一棵树.每个农民初始时获得 X 的钱.每一次操作, 一个农 ... 
- bzoj 1131 简单树形dp
		思路:随便想想就能想出来啦把... 卡了我一个vector... #include<bits/stdc++.h> #define LL long long #define fi firs ... 
- BZOJ 2651 城市改建 树形DP+模拟?
		题意 给一颗树,删除一条边再加一条边,使它仍为一颗树且任意两点间的距离的最大值最小. 题目数据范围描述有问题,n为1或重建不能使任意两点距离最大值变小,可以输出任意答案. 分析 删除一条边后会使它变成 ... 
- bzoj 4987 Tree —— 树形DP
		题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4987 其实就是在树上找有 k 个点的连通块(路径上的点都选是最优的),之间的边都走了两遍,只 ... 
- BZOJ 4753 二分+树形DP
		思路: 先二分答案 f[x][j]表示在x的子树里选j个点 f[x][j+k]=max(f[x][j+k],f[x][j]+f[v[i]][k]); 初始化 x!=0 -> f[x][1]=p[ ... 
- [BZOJ 4033] [HAOI2015] T1 【树形DP】
		题目链接:BZOJ - 4033 题目分析 使用树形DP,用 f[i][j] 表示在以 i 为根的子树,有 j 个黑点的最大权值. 这个权值指的是,这个子树内部的点对间距离的贡献,以及 i 和 Fat ... 
- [BZOJ 1907] 树的路径覆盖 【树形DP】
		题目链接:BZOJ - 1907 题目分析 使用树形 DP,f[x][0] 表示以 x 为根的子树不能与 x 的父亲连接的最小路径数(即 x 是一个折线的拐点). f[x][1] 表示以 x 为根的子 ... 
- bzoj 4871: [Shoi2017]摧毁“树状图” [树形DP]
		4871: [Shoi2017]摧毁"树状图" 题意:一颗无向树,选两条边不重复的路径,删去选择的点和路径剩下一些cc,求最多cc数. update 5.1 : 刚刚发现bzoj上 ... 
随机推荐
- Java设计模式(22)——行为模式之状态模式(State)
			一.概述 概念 再引用网友的说通俗一点: State模式在实际使用中比较多,适合"状态的切换".因为我们经常会使用If elseif else 进行状态切换, 如果针对状态的这样判 ... 
- eclipse+tomcat配置远程debug调整
			由于开发环境与真实服务器环境存在差异,有时开发时明明正常的逻辑,部署之后就会出现各种各样的问题,通过日志邮不能明确定位到问题的时候,可以采用远程debug调试来定位问题.下面就介绍一下具体的配置步骤: ... 
- ElasticSearch-Java-low-level-rest-client官方文档翻译
			人肉翻译,非谷歌机翻,部分地方添加了个人的理解,并做了分割,如有错误请在评论指出.转载请指明原链接,尊重个人劳动成果. High-Level-Rest-Client基于Low-Level ... 
- 【白书训练指南】(UVa10755)Garbage Heap
			先po代码,之后把我那几个不太明了的知识点讲讲,巩固以下.三维的扫描线算法想要掌握还真是有一定的难度的. 代码 #include <iostream> #include <cstri ... 
- HTTP请求中get和post的区别是什么
			GET和POST是Http请求中最常用的两种请求方法 首先介绍GET与POST的差异: (1)GET请求资源数据,POST向服务器传递需要处理的数据 (2)GET传递数据大小不超过2kb,POST没有 ... 
- 怎么设计好移动APP测试用例
			软件测试工作中我们需要不断的储备和总结自己的知识和经验,怎么设计好移动APP测试用例?如:手机.平板.智能设备,并在特定网络环境下. 我们需要关注的功能点,容易出错的位置,这将对我们整个测试过程起着至 ... 
- Linux命令应用大词典-第2章 获取帮助
			2.1 help:查看内部Shell命令帮助信息 2.2 man:显示在线手册页 2.3 manpath:查看和设置man手册页的查询路径 2.4 info:阅读info格式的文件 2.5 pinfo ... 
- TPO-15 C2 Performance on a biology exam
			TPO-15 C2 Performance on a biology exam 第 1 段 1.Listen to part of a conversation between a Student a ... 
- Linux的基础预备知识
			Linux下一切皆文件 1.root@mk-virtual-machine:/home/mk# root:该位置表示当前终端登录的用户名 mk-virtual-machine:/home/m ... 
- @Configuration和@Bean
			@Configuration可理解为用spring的时候xml里面的标签 @Bean可理解为用spring的时候xml里面的标签 Spring Boot不是spring的加强版,所以@Configur ... 
