题目描述

John养了一只叫Joseph的奶牛。一次她去放牛,来到一个非常长的一片地,上面有N块地方长了茂盛的草。我们可以认为草地是一个数轴上的一些点。Joseph看到这些草非常兴奋,它想把它们全部吃光。于是它开始左右行走,吃草。John和Joseph开始的时候站在p位置。Joseph的移动速度是一个单位时间一个单位距离。不幸的是,草如果长时间不吃,就会腐败。我们定义一堆草的腐败值是从Joseph开始吃草到吃到这堆草的总时间。Joseph可不想吃太腐败的草,它请John帮它安排一个路线,使得它吃完所有的草后,总腐败值最小。John的数学很烂,她不知道该怎样
做,你能帮她么?

输入

* Line 1 : Two space-separated integers: N and L. N<=1000
* Lines 2..N+1: Each line contains a single integer giving the position P of a clump (1 <= P <= 1,000,000).

输出

* Line 1: A single integer: the minimum total staleness Bessie can achieve while eating all the clumps.

样例输入

4 10
1
9
11
19

样例输出

44


题解

区间dp,膜拜popoqqq

因为路过的草一定吃,所以吃的草一定是一段区间。

用f[i][k]表示吃完从i开始连续的k堆草,且此时在左侧的最小腐败值,

用g[i][k]表示吃完从i开始连续的k堆草,且此时在右侧的最小腐败值。

这样我们发现腐败值很难求,并且无法保证最优。

所以我们可以先计算出每段时间所有草增加的腐败值,这样既能保证dp的成立,又方便计算。

状态转移方程应该很容易由f/g[i/i+1][k-1]推出来。

由于空间限制,需要用到滚动数组黑科技。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
long long f[1001][2] , g[1001][2] , p[1001];
int main()
{
int n , i , j , k , cl = 0 , cr = 0;
long long m;
scanf("%d%lld" , &n , &m);
for(i = 1 ; i <= n ; i ++ )
scanf("%lld" , &p[i]);
sort(p + 1 , p + n + 1);
for(i = 1 ; i <= n ; i ++ )
{
if(p[i] <= m)
cl = i;
if(!cr && p[i] > m)
cr = i;
}
memset(f , 0x3f , sizeof(f));
memset(g , 0x3f , sizeof(g));
if(cl) f[cl][1] = g[cl][1] = n * (m - p[cl]);
if(cr) f[cr][1] = g[cr][1] = n * (p[cr] - m);
for(k = 2 ; k <= n ; k ++ )
{
for(i = 1 ; i + k - 1 <= n ; i ++ )
{
j = i + k - 1;
f[i][k & 1] = min(f[i + 1][~k & 1] + (n - k + 1) * (p[i + 1] - p[i]) , g[i + 1][~k & 1] + (n - k + 1) * (p[j] - p[i]));
g[i][k & 1] = min(g[i][~k & 1] + (n - k + 1) * (p[j] - p[j - 1]) , f[i][~k & 1] + (n - k + 1) * (p[j] - p[i]));
}
}
printf("%lld\n" , min(f[1][n & 1] , g[1][n & 1]));
return 0;
}

【bzoj1742】[Usaco2005 nov]Grazing on the Run 边跑边吃草 区间dp的更多相关文章

  1. bzoj1742[Usaco2005 nov]Grazing on the Run 边跑边吃草*&&bzoj3074[Usaco2013 Mar]The Cow Run*

    bzoj1742[Usaco2005 nov]Grazing on the Run 边跑边吃草 bzoj3074[Usaco2013 Mar]The Cow Run 题意: 数轴上有n棵草,牛初始在L ...

  2. BZOJ1742: [Usaco2005 nov]Grazing on the Run 边跑边吃草

    数轴上n<=1000个点,从p出发以任意顺序走到所有的点,求到达每个点的时间之和的最小值. 好题!看起来水水的实际易错! 显然的结论是经过一个区间点之后肯定落在左端点或右端点上,谁没事最后还往中 ...

  3. BZOJ 1742: [Usaco2005 nov]Grazing on the Run 边跑边吃草( dp )

    dp... dp( l , r , k )  , 表示 吃了[ l , r ] 的草 , k = 1 表示最后在 r 处 , k = 0 表示最后在 l 处 . ------------------- ...

  4. [Usaco2005 nov]Grazing on the Run 边跑边吃草 BZOJ1742

    分析: 首先,连续选择一段必定最优... 区间DP,f[i][j]表示从i开始,连续j个被吃掉了,并且,牛在i处,g[i][j]则表示在i+j-1处 f[i][j]可以从g[i+1][j]和f[i+1 ...

  5. bzoj 1742: [Usaco2005 nov]Grazing on the Run 边跑边吃草【区间dp】

    挺好的区间dp,状态设计很好玩 一开始按套路设f[i][j],g[i][j]为吃完(i,j)区间站在i/j的最小腐败值,后来发现这样并不能保证最优 实际上是设f[i][j],g[i][j]为从i开始吃 ...

  6. BZOJ1742[Usaco2005 nov]Grazing on the Run

    Description John养了一只叫Joseph的奶牛.一次她去放牛,来到一个非常长的一片地,上面有N块地方长了茂盛的草.我们可 以认为草地是一个数轴上的一些点.Joseph看到这些草非常兴奋, ...

  7. 2018.10.22 bzoj1742: Grazing on the Run 边跑边吃草(区间dp)

    传送门 区间dp入门题. 可以想到当前吃掉的草一定是一个区间(因为经过的草一定会吃掉). 然后最后一定会停在左端点或者右端点. f[i][j][0/1]f[i][j][0/1]f[i][j][0/1] ...

  8. [USACO2005 nov] Grazing on the Run【区间Dp】

    Online Judge:bzoj1742,bzoj1694 Label:区间Dp 题目描述 John养了一只叫Joseph的奶牛.一次她去放牛,来到一个非常长的一片地,上面有N块地方长了茂盛的草.我 ...

  9. BZOJ2023: [Usaco2005 Nov]Ant Counting 数蚂蚁

    2023: [Usaco2005 Nov]Ant Counting 数蚂蚁 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 56  Solved: 16[S ...

随机推荐

  1. MySQL入门第一天——概述、数据表与约束操作

    一.概述 1.安装 初学MySQL,我们下载msi的安装版:http://dev.mysql.com/downloads/file.php?id=457403 安装的过程文字简述可以参考之前随笔:ht ...

  2. BZOJ1083_繁忙的都市_KEY

    题目传送门 裸的最小生成树. code: /************************************************************** Problem: 1083 U ...

  3. CLR via C#读书笔记二:类型基础

    1.CLR允许将对象转换为它的(实际)类型或者它的任何基类型. 2.is操作符检测对象是否兼容于指定类型,is操作符永远不抛出异常. 3.as操作符返回对同一个对象的非null引用.如果对象不兼容,a ...

  4. 华为LiteOS系统使用-任务调度函数-第一篇

    1.最近项目遇到华为的LiteOS小型操作系统,使用学习 2. 先打开一个工程LiteOS_Kernel-master\projects\LPC824_LITE_KEIL 3. main.c里面2个关 ...

  5. C++中的引用常见用法

    1.引用的内涵 引用就是给变量取外号而已. 2.四种不能使用引用的情况 void &r=x; //不能建立void类型引用 int &&r=x; //不能建立引用的引用 int ...

  6. cocos2d-x3.7 cclabel文字破碎,异常,变乱

    效果图如下: 无论是按钮(control button),还是普通的label都有小概率出现这种情况. 该问题发现于cocos2d-x3.7 原因: 在3.x中使用ttfconfig创建的label, ...

  7. steam更新出错 应用运行中

    游戏程序没有完全关闭,仍在后台运行. 打开任务处理器,选择进程,下面找到TslGame,关闭之.

  8. 180612-Spring之Yml配置文件加载问题

    Yml配置文件加载问题 在resource目录下有一个application.yml文件,希望是通过@PropertySource注解,将配置文件数据读取到Environment中,然而调试发现数据始 ...

  9. Ubuntu卡在logo界面

    对于这个问题,我也是在最近一次偶然的机会中发现的. 我重装了了Ubuntu 18.04, 很多东西需要重新配置,  有个刚性需求就是配置shadowsocks实现***,对于从windows向linu ...

  10. 初涉 JavaScript

    网页是什么 网页 = Html+CSS+JavaScriptHtml:网页元素内容CSS:控制网页样式JavaScript:操作网页内容,实现功能或者效果 JavaScirpt 发展历史 参考 使用 ...