BZO4197 & 洛谷2150 & UOJ129:[NOI2015]寿司晚宴——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4197
https://www.luogu.org/problemnew/show/P2150
为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴。小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴。
在晚宴上,主办方为大家提供了 n−1 种不同的寿司,编号 1,2,3,…,n−1,其中第 i 种寿司的美味度为 i+1 (即寿司的美味度为从 2 到 n)。现在小 G 和小 W 希望每人选一些寿司种类来品尝,他们规定一种品尝方案为不和谐的当且仅当:小 G 品尝的寿司种类中存在一种美味度为 x 的寿司,小 W 品尝的寿司中存在一种美味度为 y 的寿司,而 x 与 y 不互质。现在小 G 和小 W 希望统计一共有多少种和谐的品尝寿司的方案(对给定的正整数 p 取模)。注意一个人可以不吃任何寿司。
这题的难点就在思维了(然而我就少脑子),只要你想到压位质数的话,这道题就迎刃而解了。
参考:https://www.luogu.org/blog/larryzhong/solution-p2150
设f[i][j][k]表示到第i个寿司,G取的寿司的质因子集合为j,W为k。
不难想到dp的转移方程。
但是n是<=500的啊,其质数应该会有很多啊我们也压不过来啊。
考虑到一个数只有一个大于sqrt(n)的质因子,所以我们惊奇的发现,我们只需要压8个小于sqrt(n)的质因子即可,对于那个多出来的质数我们额外考虑就行了。
我们先对每个数的大因子排个序,则:
设g[i][0/1][j][k]表示当前处理大因子为i,j有大因子/k有大因子,G取的寿司的质因子集合为j,W为k。
转移方程基本同f。
将相同i的数处理完之后再把g放到f里。
f[j][k]=g[0][j][k]+g[1][j][k]-f[j][k]
(其中多减掉的那个原因是我们把两个集合都不取大因子i的情况算了两遍。)
(注意到f和g的第一维都可以省略。)
那么答案就是j和k不互相包含的f的总和。
#include<cmath>
#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
const int B=;
const int M=<<B;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct num{
int a,b;
}s[N];
int pri[B]={,,,,,,,};
int n,p,f[M][M],g[][M][M];
inline bool cmp(num a,num b){
return a.b<b.b;
}
int main(){
n=read(),p=read();
for(int i=;i<=n;i++){
int tmp=i;
for(int j=;j<B;j++){
while(tmp%pri[j]==){
tmp/=pri[j];
s[i].a|=(<<j);
}
}
if(tmp>)s[i].b=tmp;
}
sort(s+,s+n+,cmp);
f[][]=;
for(int i=;i<=n;i++){
if(i==||(!s[i].b)||s[i].b!=s[i-].b){
memcpy(g[],f,sizeof(f));
memcpy(g[],f,sizeof(f));
}
for(int j=M-;j>=;j--){
for(int k=M-;k>=;k--){
(g[][j|s[i].a][k]+=g[][j][k])%=p;
(g[][j][k|s[i].a]+=g[][j][k])%=p;
}
}
if(i==n||(!s[i].b)||s[i].b!=s[i+].b){
for(int j=M-;j>=;j--){
for(int k=M-;k>=;k--){
f[j][k]=((g[][j][k]+g[][j][k]-f[j][k])%p+p)%p;
}
}
}
}
int ans=;
for(int j=;j<M;j++){
for(int k=;k<M;k++){
if(!(j&k))(ans+=f[j][k])%=p;
}
}
printf("%d\n",ans);
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++
BZO4197 & 洛谷2150 & UOJ129:[NOI2015]寿司晚宴——题解的更多相关文章
- BZOJ4197 / UOJ129 [Noi2015]寿司晚宴
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- UOJ129 NOI2015 寿司晚宴 数论、状压DP
传送门 数论题\(n \leq 500\)肯定是什么暴力算法-- 注意到每一个数\(> \sqrt{n}\)的因子最多只有一个,这意味着\(> \sqrt{n}\)的因子之间是独立的,而只 ...
- [BZOJ4197][Noi2015]寿司晚宴
4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 412 Solved: 279[Submit][Status] ...
- BZOJ 4197: [Noi2015]寿司晚宴( dp )
N^0.5以内的质数只有8个, dp(i, j, k)表示用了前i个大质数(>N^0.5), 2人选的质数(<=N^0.5)集合分别为j, k时的方案数. 转移时考虑当前的大质数p是给哪个 ...
- BZOJ_4197_[Noi2015]寿司晚宴_状态压缩动态规划
BZOJ_4197_[Noi2015]寿司晚宴_状态压缩动态规划 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被 ...
- [NOI2015]寿司晚宴 --- 状压DP
[NOI2015]寿司晚宴 题目描述 为了庆祝NOI的成功开幕,主办方为大家准备了一场寿司晚宴. 小G和小W作为参加NOI的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了n−1种不同的寿 ...
- 【BZOJ4197】[Noi2015]寿司晚宴 状压DP+分解质因数
[BZOJ4197][Noi2015]寿司晚宴 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴 ...
- [UOJ#129][BZOJ4197][Noi2015]寿司晚宴
[UOJ#129][BZOJ4197][Noi2015]寿司晚宴 试题描述 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司 ...
- BZOJ 4197: [Noi2015]寿司晚宴 状态压缩 + 01背包
4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec Memory Limit: 512 MB Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿 ...
随机推荐
- DEDEcms调用当前栏目顶级栏目url地址
include/common.func.php 找到这个文件 在文件最下方加入以下代码: //获取顶级栏目url function GetTopTypeurl($id) { global $dsql; ...
- Linux命令应用大词典-第32章 性能监控
32.1 sar:收集.报告或保存系统活动信息 32.2 iostat:报告CPU统计数据和设备.分区输入.输出消息 32.3 iotop:进行I/O监控 32.4 mpstat:报告CPU相关的统计 ...
- Python字典操作大全
//2018.11.6 Python字典操作 1.对于python编程里面字典的定义有以下几种方法: >>> a = dict(one=1, two=2, three=3) > ...
- kettle_简单入门
简介 Kettle是一款纯Java开发的ETL工具,它是跨平台的,所以它可以在Window.Linux.Unix上运行.注意什么是ETL,读者可以自行百度了解,我的理解是将一个数据库的数据导入到另外一 ...
- 论文阅读之Joint cell segmentation and tracking using cell proposals
论文提出了一种联合细胞分割和跟踪方法,利用细胞segmentation proposals创建有向无环图,然后在该图中迭代地找到最短路径,为单个细胞提供分割,跟踪和事件. 3. PROPOSAL GE ...
- Machine Learning笔记整理 ------ (三)基本性能度量
1. 均方误差,错误率,精度 给定样例集 (Example set): D = {(x1, y1), (x2, y2), (x3, y3), ......, (xm, ym)} 其中xi是对应属性的值 ...
- error:no module named StringIO or cStringIO
一般遇到没有某个模块问题的时候,通常的解决方法是pip相应的模块: 不过,鉴于Python2和python3的不同(让人头疼) 解决方法:在python3中,该模块被新的模块取代,即io. 重新imp ...
- 通过Ajax上传文件至WebApi服务器
https://stackoverflow.com/questions/43013858/ajax-post-a-file-from-a-form-with-axios var formData = ...
- JavaScript筑基篇(三)->JS原型和原型链的理解
删除理由:很久以前写的,当时理解不够深入,这样描述反而看起来更复杂了.因此就删掉,免得误人子弟! 可以看看另一篇文章:[如何继承Date对象?由一道题彻底弄懂JS继承.](http://www.cnb ...
- C语言中动态内存的分配(malloc,realloc)
动态内存分配:根据需要随时开辟,随时释放的内存分配方式.分配时机和释放时机完全由程序员决定,由于没有数据声明,这部分空间没有名字.无法像使用变量或数组那样通过变量名或数组名引用其中的数据,只能通过指针 ...