不妨不管j<=i的限制。由卢卡斯定理,C(i,j) mod k=0相当于k进制下存在某位上j大于i。容易想到数位dp,即设f[x][0/1][0/1][0/1]为到第x位时是否有某位上j>i,是否卡n、m的限制的方案数。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100
#define P 1000000007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
ll n,m;
int T,k,ans,f[N][][][],a[N],b[N];
void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
int calc(ll n,ll m)
{
int t=-;
while (n) a[++t]=n%k,n/=k;
for (int i=;i<=t;i++) b[i]=m%k,m/=k;
memset(f,,sizeof(f));
f[t+][][][]=;
for (int i=t;~i;i--)
for (int j=;j<=;j++)
for (int x=;x<=;x++)
for (int y=;y<=;y++)
for (int p=x;p<=;p++)
for (int q=y;q<=;q++)
{
int ln=x==?a[i]:,rn=x==?a[i]:(p==?a[i]-:k-),lm=y==?b[i]:,rm=y==?b[i]:(q==?b[i]-:k-);
int s=;
for (int u=ln;u<=rn;u++)
for (int v=lm;v<=rm;v++)
if (v<=u) s++;
inc(f[i][j][x][y],1ll*f[i+][j][p][q]*s%P);
if (j) inc(f[i][j][x][y],1ll*f[i+][j-][p][q]*((rn-ln+)*(rm-lm+)-s)%P),
inc(f[i][j][x][y],1ll*f[i+][j][p][q]*((rn-ln+)*(rm-lm+)-s)%P);
}
return ((f[][][][]+f[][][][])%P+(f[][][][]+f[][][][])%P)%P;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4737.in","r",stdin);
freopen("bzoj4737.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read(),k=read();
while (T--)
{
cin>>n>>m;m=min(n,m);
if (m&) ans=(P-(m%P)*((m+>>)%P)%P)%P;
else ans=(P-((m+)%P)*((m>>)%P)%P)%P;
inc(ans,calc(n,m));
cout<<ans<<endl;
}
return ;
}

BZOJ4737 组合数问题(卢卡斯定理+数位dp)的更多相关文章

  1. BZOJ4591 SHOI2015超能粒子炮·改(卢卡斯定理+数位dp)

    注意到模数很小,容易想到使用卢卡斯定理,即变成一个2333进制数各位组合数的乘积.对于k的限制容易想到数位dp.可以预处理一发2333以内的组合数及组合数前缀和,然后设f[i][0/1]为前i位是否卡 ...

  2. 【XSY2691】中关村 卢卡斯定理 数位DP

    题目描述 在一个\(k\)维空间中,每个整点被黑白染色.对于一个坐标为\((x_1,x_2,\ldots,x_k)\)的点,他的颜色我们通过如下方式计算: 如果存在一维坐标是\(0\),则颜色是黑色. ...

  3. uoj86 mx的组合数 (lucas定理+数位dp+原根与指标+NTT)

    uoj86 mx的组合数 (lucas定理+数位dp+原根与指标+NTT) uoj 题目描述自己看去吧( 题解时间 首先看到 $ p $ 这么小还是质数,第一时间想到 $ lucas $ 定理. 注意 ...

  4. [BZOJ4591][SHOI2015]超能粒子炮·改(Lucas定理+数位DP)

    大组合数取模可以想到Lucas,考虑Lucas的意义,实际上是把数看成P进制计算. 于是问题变成求1~k的所有2333进制数上每一位数的组合数之积. 数位DP,f[i][0/1]表示从高到低第i位,这 ...

  5. bzoj 1902: Zju2116 Christopher lucas定理 && 数位DP

    1902: Zju2116 Christopher Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 172  Solved: 67[Submit][Stat ...

  6. CF582D Number of Binominal Coefficients 库默尔定理 数位dp

    LINK:Number of Binominal Coefficients 原来难题都长这样.. 水平有限只能推到一半. 设\(f(x)\)表示x中所含p的最大次数.即x质因数分解之后 p的指标. 容 ...

  7. Codeforces 582D - Number of Binominal Coefficients(Kummer 定理+数位 dp)

    Codeforces 题目传送门 & 洛谷题目传送门 一道数论与数位 dp 结合的神题 %%% 首先在做这道题之前你需要知道一个定理:对于质数 \(p\) 及 \(n,k\),最大的满足 \( ...

  8. BZOJ4737 组合数问题 【Lucas定理 + 数位dp】

    题目 组合数C(n,m)表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3)三个物品中选择两个物品可以有( 1,2),(1,3),(2,3)这三种选择方法.根据组合数的定义,我们可以给 ...

  9. 花神的数论题(这题...哎。数位dp咋就这么 not naive 呢)

    题意简介 没什么好说,就是让你求出 1 ~ n 之间每个数转化为二进制后 '1' 的个数,然后乘起来输出积 题目分析 emmmm.... 两种解法(同是 $O(\log^2 N)$ 的算法,组合数效率 ...

随机推荐

  1. 北京Uber优步司机奖励政策(2月19日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  2. 北京Uber优步司机奖励政策(12月30日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  3. 北京Uber优步司机奖励政策(12月15日)

    用户组:人民优步及电动车(适用于12月15日) 滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:htt ...

  4. Mybatis简单入门

    前言 之前一直有直接使用Mybatis,但是没有细致的整理出来.长时间没有使用,细致的内容都忘记了.因此借此机会,从头开始整理,以后可以直接查看此次记录的内容. Mybatis的介绍 MyBatis是 ...

  5. STM32的GUI库使用

    1. 实验平台使用百为的STM32F103开发板 2. 例程目录\百为stm32开发板光盘\stm32_gui_lib\Project\Embedded_GUI_Example\EWARM 3. 直接 ...

  6. 绝地求生大逃杀BE启动失败,应用程序无法正常启动

    今日更新绝地求生大逃杀后部分客户反馈绝地求生点击启动提示BE安装,应用程序无法启动 问题原因:经过排查发现,客户开启过超级工作站运行过游戏,在系统镜像包中保留了旧版的BE服务,致使新版BE无法安装,冲 ...

  7. possible new indexes 出现了

  8. vs找不到lib以及编译的link过程中出现的问题

    1.#pragma comment 程序中已经通过该语句完成lib库的引入,如果再在input里面添加lib库就会报错: 2.要在general的“导入外部库”的设置选项的目录下面添加引用到的lib库 ...

  9. 使用Python访问HDFS

    最近接触到大数据,对于Skpark和Hadoop的料及都停留在第一次听到这个名词时去搜一把看看大概介绍免得跟不上时代的层次. 在实际读了点别人的代码,又自己写了一些之后,虽然谈不上理解加深,至少对于大 ...

  10. Linux命令应用大词典-第34章 打印与传真

    34.1 lpr:打印文件 34.2 lpq:显示打印队列状态 34.3 lprm:取消打印作业 34.4 lpstat:显示cups状态信息 34.5 cupsaccept:接受作业发送到目的地 3 ...