BZOJ4737 组合数问题(卢卡斯定理+数位dp)
不妨不管j<=i的限制。由卢卡斯定理,C(i,j) mod k=0相当于k进制下存在某位上j大于i。容易想到数位dp,即设f[x][0/1][0/1][0/1]为到第x位时是否有某位上j>i,是否卡n、m的限制的方案数。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100
#define P 1000000007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
ll n,m;
int T,k,ans,f[N][][][],a[N],b[N];
void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
int calc(ll n,ll m)
{
int t=-;
while (n) a[++t]=n%k,n/=k;
for (int i=;i<=t;i++) b[i]=m%k,m/=k;
memset(f,,sizeof(f));
f[t+][][][]=;
for (int i=t;~i;i--)
for (int j=;j<=;j++)
for (int x=;x<=;x++)
for (int y=;y<=;y++)
for (int p=x;p<=;p++)
for (int q=y;q<=;q++)
{
int ln=x==?a[i]:,rn=x==?a[i]:(p==?a[i]-:k-),lm=y==?b[i]:,rm=y==?b[i]:(q==?b[i]-:k-);
int s=;
for (int u=ln;u<=rn;u++)
for (int v=lm;v<=rm;v++)
if (v<=u) s++;
inc(f[i][j][x][y],1ll*f[i+][j][p][q]*s%P);
if (j) inc(f[i][j][x][y],1ll*f[i+][j-][p][q]*((rn-ln+)*(rm-lm+)-s)%P),
inc(f[i][j][x][y],1ll*f[i+][j][p][q]*((rn-ln+)*(rm-lm+)-s)%P);
}
return ((f[][][][]+f[][][][])%P+(f[][][][]+f[][][][])%P)%P;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4737.in","r",stdin);
freopen("bzoj4737.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read(),k=read();
while (T--)
{
cin>>n>>m;m=min(n,m);
if (m&) ans=(P-(m%P)*((m+>>)%P)%P)%P;
else ans=(P-((m+)%P)*((m>>)%P)%P)%P;
inc(ans,calc(n,m));
cout<<ans<<endl;
}
return ;
}
BZOJ4737 组合数问题(卢卡斯定理+数位dp)的更多相关文章
- BZOJ4591 SHOI2015超能粒子炮·改(卢卡斯定理+数位dp)
注意到模数很小,容易想到使用卢卡斯定理,即变成一个2333进制数各位组合数的乘积.对于k的限制容易想到数位dp.可以预处理一发2333以内的组合数及组合数前缀和,然后设f[i][0/1]为前i位是否卡 ...
- 【XSY2691】中关村 卢卡斯定理 数位DP
题目描述 在一个\(k\)维空间中,每个整点被黑白染色.对于一个坐标为\((x_1,x_2,\ldots,x_k)\)的点,他的颜色我们通过如下方式计算: 如果存在一维坐标是\(0\),则颜色是黑色. ...
- uoj86 mx的组合数 (lucas定理+数位dp+原根与指标+NTT)
uoj86 mx的组合数 (lucas定理+数位dp+原根与指标+NTT) uoj 题目描述自己看去吧( 题解时间 首先看到 $ p $ 这么小还是质数,第一时间想到 $ lucas $ 定理. 注意 ...
- [BZOJ4591][SHOI2015]超能粒子炮·改(Lucas定理+数位DP)
大组合数取模可以想到Lucas,考虑Lucas的意义,实际上是把数看成P进制计算. 于是问题变成求1~k的所有2333进制数上每一位数的组合数之积. 数位DP,f[i][0/1]表示从高到低第i位,这 ...
- bzoj 1902: Zju2116 Christopher lucas定理 && 数位DP
1902: Zju2116 Christopher Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 172 Solved: 67[Submit][Stat ...
- CF582D Number of Binominal Coefficients 库默尔定理 数位dp
LINK:Number of Binominal Coefficients 原来难题都长这样.. 水平有限只能推到一半. 设\(f(x)\)表示x中所含p的最大次数.即x质因数分解之后 p的指标. 容 ...
- Codeforces 582D - Number of Binominal Coefficients(Kummer 定理+数位 dp)
Codeforces 题目传送门 & 洛谷题目传送门 一道数论与数位 dp 结合的神题 %%% 首先在做这道题之前你需要知道一个定理:对于质数 \(p\) 及 \(n,k\),最大的满足 \( ...
- BZOJ4737 组合数问题 【Lucas定理 + 数位dp】
题目 组合数C(n,m)表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3)三个物品中选择两个物品可以有( 1,2),(1,3),(2,3)这三种选择方法.根据组合数的定义,我们可以给 ...
- 花神的数论题(这题...哎。数位dp咋就这么 not naive 呢)
题意简介 没什么好说,就是让你求出 1 ~ n 之间每个数转化为二进制后 '1' 的个数,然后乘起来输出积 题目分析 emmmm.... 两种解法(同是 $O(\log^2 N)$ 的算法,组合数效率 ...
随机推荐
- 成都Uber优步司机奖励政策(1月18日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- Aop实现拦截方法参数
对于spring框架来说,最重要的两大特性就是AOP 和IOC. 以前一直都知道有这两个东西,在平时做的项目中也常常会涉及到这两块,像spring的事务管理什么的,在看了些源码后,才知道原来事务管理也 ...
- mysql using filesort Using temporary
using filesort 一般人的回答是: “当行数据太大,导致内存无法容下这些数据产生的临时表时,他们就会被放入磁盘中排序.” 很不幸,这个答案是错的 ,临时表在太大的时候确实会到磁盘离去,但 ...
- javasript 字符串 数组操作
Javascript中经常涉及到对字符串和数组的处理,今天总结一下具体的用法 一 操作字符串 String对象有很多函数,可以以不同的方式访问和操作字符串,具体方法如下: charAt(index ...
- H5-基础-day01
类选择器和ID选择器 相同点:可以应用于任何元素不同点: 1.ID选择器只能在文档中使用一次.与类选择器不同,在一个HTML文档中,ID选择器只能使用一次,而且仅一次.而类选择器可以使用多次. 2 ...
- 「日常训练」Two Substrings(Codeforces Round 306 Div.2 A)
题意与分析 一道非常坑的水题.分析醒了补. 代码 #include <bits/stdc++.h> #define MP make_pair #define PB emplace_back ...
- Selenium(Python) ddt数据驱动
首先, 添加ddt模块: import unittestfrom time import sleep from ddt import ddt, data, unpack# 导入ddt模块from se ...
- [CodeForce721C]Journey
题目描述 Recently Irina arrived to one of the most famous cities of Berland - the Berlatov city. There a ...
- C#-返回相对时间函数
在公司一直做前端,经理叫我写一个后端函数,要求是: 参数:DateTime--传入任意时间类型返回:string --返回传入参数时间与当前时间的相对时间字符串,如:3天前,1小时前,5分钟前. 注意 ...
- Windows环境下使用kafka单机模式
测试运行环境 Win10 kafka_2.11-1.0.0 zookeeper-3.4.10 1.安装Zookeeper Kafka的运行依赖于Zookeeper,所以在运行Kafka之前我们需要安装 ...