ResourceManager (RM)负责跟踪集群中的资源,以及调度应用程序(例如,MapReduce作业)。在Hadoop 2.4之前,集群中只有一个ResourceManager,当其中一个宕机时,将影响整个集群。高可用性特性增加了冗余的形式,即一个主动/备用的ResourceManager对,以便可以进行故障转移。

YARN HA的架构如下图所示:



本例中,各节点的角色分配如下表所示:

节点 角色
centos01 ResourceManager NodeManager
centos02 ResourceManager NodeManager
centos03 NodeManager

下面将逐步讲解YARN HA的配置步骤。

7.1 yarn-site.xm文件配置

(1)修改yarn-site.xm文件,加入以下内容:

点击展开内容
   <!--YARN HA配置-->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>cluster1</value>
</property>
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>centos01</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>centos02</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm1</name>
<value>centos01:8088</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm2</name>
<value>centos02:8088</value>
</property>
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>centos01:2181,centos02:2181,centos03:2181</value>
</property>
<property><!--启用RM重启的功能,默认为false-->
<name>yarn.resourcemanager.recovery.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.resourcemanager.store.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>

上述配置参数解析:
yarn.resourcemanager.ha.enabled:开启RM HA功能。
yarn.resourcemanager.cluster-id:标识集群中的RM。如果设置该选项,需要确保所有的RMs在配置中都有自己的id。
yarn.resourcemanager.ha.rm-ids:RMs的逻辑id列表。可以自定义,此处设置为“rm1,rm2”。后面的配置将引用该id。
yarn.resourcemanager.hostname.rm1:指定RM对应的主机名。另外,可以设置RM的每个服务地址。
yarn.resourcemanager.webapp.address.rm1:指定RM的Web端访问地址。
yarn.resourcemanager.zk-address:指定集成的ZooKeeper的服务地址。
yarn.resourcemanager.recovery.enabled:启用RM重启的功能,默认为false。
yarn.resourcemanager.store.class:用于状态存储的类,默认为org.apache.hadoop.yarn.server.resourcemanager.recovery.FileSystemRMStateStore,基于Hadoop文件系统的实现。还可以为org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore,该类为基于ZooKeeper的实现。此处指定该类。

(2)yarn-site.xm文件配置好后,需要将其发送到集群中其它节点。

(3)接着上一章启动好的HDFS,继续进行启动YARN。

分别在centos01、centos02节点上执行以下命令,启动ResourceManager:

[hadoop@centos01 hadoop-2.7.1]$ sbin/yarn-daemon.sh start resourcemanager

分别在centos01、centos02、centos03节点上执行以下命令,启动nodemanager:

[hadoop@centos01 hadoop-2.7.1]$ sbin/yarn-daemon.sh start nodemanager

(4)YARN启动后,查看各节点Java进程:

[hadoop@centos01 hadoop-2.7.1]$ jps
3360 QuorumPeerMain
4080 DFSZKFailoverController
4321 NodeManager
4834 Jps
3908 JournalNode
3702 DataNode
4541 ResourceManager
3582 NameNode [hadoop@centos02 hadoop-2.7.1]$ jps
4486 Jps
3815 DFSZKFailoverController
4071 NodeManager
4359 ResourceManager
3480 NameNode
3353 QuorumPeerMain
3657 JournalNode
3563 DataNode [hadoop@centos03 hadoop-2.7.1]$ jps
3496 JournalNode
4104 Jps
3836 NodeManager
3293 QuorumPeerMain
3390 DataNode

此时浏览器输入地址http://centos01:8088 访问活动状态的ResourceManager,查看YARN的启动状态。如下图所示。



如果访问备份ResourceManager地址:http://centos02:8088 发现自动跳转到了地址http://centos01:8088。这是因为此时活动状态的ResourceManager在centos01节点上。访问备份节点的ResourceManager会自动跳转到活动节点。

7.2 测试YARN自动故障转移

在centos01节点上执行MapReduce默认的WordCount程序,当正在执行map阶段时,新开一个SSH Shell窗口,杀掉centos01的ResourceManager进程,观察程序执行过程。执行MapReduce默认的WordCount程序的命令如下:

[hadoop@centos01 hadoop-2.7.1]$ bin/yarn jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.1.jar wordcount /input /output

执行结果如下:

[hadoop@centos01 hadoop-2.7.1]$ bin/yarn jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.1.jar wordcount /input /output
18/03/16 10:48:22 INFO input.FileInputFormat: Total input paths to process : 1
18/03/16 10:48:22 INFO mapreduce.JobSubmitter: number of splits:1
18/03/16 10:48:23 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1521168402181_0001
18/03/16 10:48:23 INFO impl.YarnClientImpl: Submitted application application_1521168402181_0001
18/03/16 10:48:23 INFO mapreduce.Job: The url to track the job: http://centos01:8088/proxy/application_1521168402181_0001/
18/03/16 10:48:23 INFO mapreduce.Job: Running job: job_1521168402181_0001
18/03/16 10:48:56 INFO mapreduce.Job: Job job_1521168402181_0001 running in uber mode : false
18/03/16 10:48:57 INFO mapreduce.Job: map 0% reduce 0%
18/03/16 10:50:21 INFO mapreduce.Job: map 100% reduce 0%
18/03/16 10:50:32 INFO mapreduce.Job: map 100% reduce 100%
18/03/16 10:50:36 INFO mapreduce.Job: Job job_1521168402181_0001 completed successfully
18/03/16 10:50:37 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=1321
FILE: Number of bytes written=239335
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=1094
HDFS: Number of bytes written=971
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Launched reduce tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=14130
Total time spent by all reduces in occupied slots (ms)=7851
Total time spent by all map tasks (ms)=14130
Total time spent by all reduce tasks (ms)=7851
Total vcore-seconds taken by all map tasks=14130
Total vcore-seconds taken by all reduce tasks=7851
Total megabyte-seconds taken by all map tasks=14469120
Total megabyte-seconds taken by all reduce tasks=8039424
Map-Reduce Framework
Map input records=29
Map output records=109
Map output bytes=1368
Map output materialized bytes=1321
Input split bytes=101
Combine input records=109
Combine output records=86
Reduce input groups=86
Reduce shuffle bytes=1321
Reduce input records=86
Reduce output records=86
Spilled Records=172
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=188
CPU time spent (ms)=1560
Physical memory (bytes) snapshot=278478848
Virtual memory (bytes) snapshot=4195344384
Total committed heap usage (bytes)=140480512
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=993
File Output Format Counters
Bytes Written=971

从上述结果中可以看出,虽然ResourceManager进程被杀掉了,但是YARN仍然能够流畅的执行,说明自动故障转移功能生效了,ResourceManager遇到故障后,自动切换到了centos02节点上继续执行。此时浏览器访问备用ResourceManager的Web端地址http://centos02:8088发现可以成功访问了。显示任务成功执行完毕。



到此,YARN HA集群搭建完毕。

第7章 YARN HA配置的更多相关文章

  1. 第6章 HDFS HA配置

    目录 6.1 hdfs-site.xml文件配置 6.2 core-site.xml文件配置 6.3 启动与测试 6.4 结合ZooKeeper进行自动故障转移 在Hadoop 2.0.0之前,一个H ...

  2. Hadoop2.4.1 64-Bit QJM HA and YARN HA + Zookeeper-3.4.6 + Hbase-0.98.8-hadoop2-bin HA Install

    Hadoop2.4.1 64-Bit QJM HA and YARN HA Install + Zookeeper-3.4.6 + Hbase-0.98.8-hadoop2-bin HA(Hadoop ...

  3. hadoop-2.3.0-cdh5.1.0完全分布式集群配置HA配置

    一.安装前准备: 操作系统:CentOS 6.5 64位操作系统 环境:jdk1.7.0_45以上,本次采用jdk-7u55-linux-x64.tar.gz master01 10.10.2.57  ...

  4. hadoop-2.3.0-cdh5.1.0完全分布式集群配置及HA配置(待)

    一.安装前准备: 操作系统:CentOS 6.5 64位操作系统 环境:jdk1.7.0_45以上,本次采用jdk-7u55-linux-x64.tar.gz master01 10.10.2.57  ...

  5. CentOS7安装CDH 第七章:CDH集群Hadoop的HA配置

    相关文章链接 CentOS7安装CDH 第一章:CentOS7系统安装 CentOS7安装CDH 第二章:CentOS7各个软件安装和启动 CentOS7安装CDH 第三章:CDH中的问题和解决方法 ...

  6. Hadoop 管理工具HUE配置-Yarn Resource Manager HA配置

    安装HUE之后,需要配置很多东西才能将这个系统的功能发挥出来,因为Yarn是配置的HA模式,所以在配置HUE的时候,会有些不用,下面一段文字是官网拿来的 # Configuration for YAR ...

  7. 第九章 搭建Hadoop 2.2.0版本HDFS的HA配置

    Hadoop中的NameNode好比是人的心脏,非常重要,绝对不可以停止工作.在hadoop1时代,只有一个NameNode.如果该NameNode数据丢失或者不能工作,那么整个集群就不能恢复了.这是 ...

  8. 企业级hbase HA配置

    1 HBase介绍HBase是一个分布式的.面向列的开源数据库,就像Bigtable利用了Google文件系统(File System)所提供的分布式数据存储一样,HBase在Hadoop之上提供了类 ...

  9. HAWQ集成Yarn HA作为资源管理服务

    一.第一步当然是配置YARN HA,这在使用ambari管理时很简单,这里不在赘述. 二.建立HAWQ的专用资源队列queue 不要手工编辑scheduler设置,最方便的当然是使用queue man ...

随机推荐

  1. 关于thrift的一些探索——thrift序列化技术

    thrift的IDL,相当于一个钥匙.而thrift传输过程,相当于从两个房间之间的传输数据. 图-1 (因为Thrift采用了C/S模型,不支持双向通信:client只能远程调用server端的RP ...

  2. Last_SQL_Error: Error 'Can't drop database 'ABC'; database doesn't exist' on query. Default database: 'ABC'. Query: 'drop database ABC'

    查看从库状态发现报错: show slave status\G; 发现是主库上删除了一个数据库,但是从库上面没有,从库执行这个语句的时候失败报错. 解决方法: 停止从库 stop slave; 创建语 ...

  3. Python 编码为什么那么蛋疼?

    据说,每个做 Python 开发的都被字符编码的问题搞晕过,最常见的错误就是 UnicodeEncodeError.UnicodeDecodeError,你好像知道怎么解决,遗憾的是,错误又出现在其它 ...

  4. antd Grid

    import { Row, Col } from 'antd'; <Row type="flex" //内容布局(左靠齐,右靠齐,居中) justify="star ...

  5. The categories of Reinforcement Learning 强化学习分类

    RL分为三大类: (1)通过行为的价值来选取特定行为的方法,具体 包括使用表格学习的 q learning, sarsa, 使用神经网络学习的 deep q network: (2)直接输出行为的 p ...

  6. February 20 2017 Week 8 Monday

    Behind every beautiful thing, there's some kind of pain. 美丽背后,必有努力. No pains, no gains, and sometime ...

  7. Fcoin和Coinex,谁更值得投资?

    2018年是数字货币市场很熊的一年,大部分币种在这一年下跌超过了90%.但是这一年对于数字货币的发展也是不平凡的,可以说是至关重要的一年.通证经济商业模型在这一年萌芽,并茁壮成长,2018是通证经济元 ...

  8. S/4HANA生产订单的标准状态和透明工厂原型状态的映射

    事务码CO03查看生产订单的状态: 从下面的界面能看出S/4HANA里生产订单在任意时刻可能存在多个状态: 生产订单的ID和状态ID的关系是1:N,维护在数据库表VSAUFK里: 如何把上述SAP系统 ...

  9. Makefile 实例

    CROSS_COMPILE = HI_CFLAGS= -Wall -O2 -g -march=armv7-a -mcpu=cortex-a9 -mfloat-abi=softfp -mfpu=vfpv ...

  10. WSGI、flup、fastcgi、web.py、uwsgi

    ==================        网上别人的理解 =================== http://www.douban.com/note/13508388/ 1.Apache/ ...