POJ 1655.Balancing Act-树的重心(DFS) 模板(vector存图)
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 17497 | Accepted: 7398 |
Description
For example, consider the tree:

Deleting node 4 yields two trees whose member nodes are {5} and {1,2,3,6,7}. The larger of these two trees has five nodes, thus the balance of node 4 is five. Deleting node 1 yields a forest of three trees of equal size: {2,6}, {3,7}, and {4,5}. Each of these trees has two nodes, so the balance of node 1 is two.
For each input tree, calculate the node that has the minimum balance. If multiple nodes have equal balance, output the one with the lowest number.
Input
Output
Sample Input
1
7
2 6
1 2
1 4
4 5
3 7
3 1
Sample Output
1 2
Source
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<bitset>
#include<cassert>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<deque>
#include<iomanip>
#include<list>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int,int> pii; const double PI=acos(-1.0);
const double eps=1e-;
const ll mod=1e9+;
const int inf=0x3f3f3f3f;
const int maxn=1e5+;
const int maxm=+;
#define ios ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); int n,father;
int siz[maxn];//siz保存每个节点的子树大小
bool vist[maxn];
int point=inf,minsum=-;//minsum表示切掉重心后最大连通块的大小
vector<int>G[maxn]; void DFS(int u,int x)//遍历到节点x,x的父亲是u
{
siz[x]=;
bool flag=true;
for(int i=;i<G[x].size();i++){
int v=G[x][i];
if(!vist[v]){
vist[v]=true;
DFS(x,v);//访问子节点。
siz[x]+=siz[v];//回溯计算本节点的siz
if(siz[v]>n/) flag=false;//判断节点x是不是重心。
}
}
if(n-siz[x]>n/) flag=false;//判断节点x是不是重心。
if(flag&&x<point) point=x,father=u;//这里写x<point是因为本题中要求节点编号最小的重心。
} void init()
{
memset(vist,false,sizeof(vist));
memset(siz,,sizeof(siz));
minsum=-;
point=inf;
for(int i=;i<maxn;i++) G[i].clear();
} int main()
{
int t;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
init();
for(int i=;i<n;i++){
int u,v;
scanf("%d%d",&u,&v);
G[u].push_back(v);
G[v].push_back(u);
}
vist[]=;
DFS(-,);//任意选取节点作为根,根节点的父亲是-1。
for(int i=;i<G[point].size();i++)
if(G[point][i]==father) minsum=max(minsum,n-siz[point]);
else minsum=max(minsum,siz[G[point][i]]);
printf("%d %d\n",point,minsum);
}
return ;
}
POJ 1655.Balancing Act-树的重心(DFS) 模板(vector存图)的更多相关文章
- POJ 1655 Balancing Act 树的重心
Balancing Act Description Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. ...
- POJ 1655 - Balancing Act 树型DP
这题和POJ 3107 - Godfather异曲同工...http://blog.csdn.net/kk303/article/details/9387251 Program: #include&l ...
- POJ.1655 Balancing Act POJ.3107 Godfather(树的重心)
关于树的重心:百度百科 有关博客:http://blog.csdn.net/acdreamers/article/details/16905653 1.Balancing Act To POJ.165 ...
- poj 1655 Balancing Act 求树的重心【树形dp】
poj 1655 Balancing Act 题意:求树的重心且编号数最小 一棵树的重心是指一个结点u,去掉它后剩下的子树结点数最少. (图片来源: PatrickZhou 感谢博主) 看上面的图就好 ...
- POJ 1655 Balancing Act【树的重心模板题】
传送门:http://poj.org/problem?id=1655 题意:有T组数据,求出每组数据所构成的树的重心,输出这个树的重心的编号,并且输出重心删除后得到的最大子树的节点个数,如果个数相同, ...
- 『Balancing Act 树的重心』
树的重心 我们先来认识一下树的重心. 树的重心也叫树的质心.找到一个点,其所有的子树中最大的子树节点数最少,那么这个点就是这棵树的重心,删去重心后,生成的多棵树尽可能平衡. 根据树的重心的定义,我们可 ...
- POJ 1655 - Balancing Act - [DFS][树的重心]
链接:http://poj.org/problem?id=1655 Time Limit: 1000MS Memory Limit: 65536K Description Consider a tre ...
- POJ 1655 Balancing Act【树的重心】
Balancing Act Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14251 Accepted: 6027 De ...
- POJ 1655.Balancing Act 树形dp 树的重心
Balancing Act Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14550 Accepted: 6173 De ...
随机推荐
- array_value
<?php $a=array("Name"=>"Bill","Age"=>"60","Cou ...
- C# 生成订单号的几种方式
public class RandomNumber { public static object _lock = new object(); ; public string GetRandom1() ...
- 多线程复习 Rlock ,Condition,Semaphore
#对于io操作来说,多线程和多进程性能差别不大 #1.通过Thread类实例化 import time import threading def get_detail_html(url): print ...
- 「6月雅礼集训 2017 Day4」寻找天哥
[题目大意] 给出$n$个三维向量,设当前向量长度为$L$,每次沿着向量等概率走$[0,L]$个长度.一个球每秒半径增加1个长度,直到覆盖位置,每秒耗能为球体积,求总耗能的期望. 设最后半径为R,那么 ...
- (转)matlab练习程序(HOG方向梯度直方图)
matlab练习程序(HOG方向梯度直方图)http://www.cnblogs.com/tiandsp/archive/2013/05/24/3097503.html HOG(Histogram o ...
- 面试精选之Promise
常见Promise面试题 我们看一些 Promise 的常见面试问法,由浅至深. 1.了解 Promise 吗? 2.Promise 解决的痛点是什么? 3.Promise 解决的痛点还有其他方法可以 ...
- [bzoj1005][HNOI2008]明明的烦恼-Prufer编码+高精度
Brief Description 给出标号为1到N的点,以及某些点最终的度数,允许在 任意两点间连线,可产生多少棵度数满足要求的树? Algorithm Design 结论题. 首先可以参考这篇文章 ...
- canvas_基于canvan绘制的双半圆环进度条
效果图 实现原理: 1.使用canvas绘制两个半圆弧,底图灰色半圆弧和颜色进度圆弧. 2.利用setInterval计时器,逐步改变颜色进度条,达到进度条的效果. 效果代码: <!DOCTYP ...
- 常见网络命令之Ping命令
前言:计算机网络老师要求我们自己总结一下常见的网络命,然后上课可以上去讲一下这些命令使用,像我这么听话的好学生,肯定是照老师要求,认真的总结了一下,总结的过程中,我发现网上已经有的资源讲的都不是很详细 ...
- 2017-2018-1 20179205《Linux内核原理与设计》第四周作业
<Linux内核原理与分析> 视频学习及实验操作 Linux内核源代码 视频中提到了三个我们要重点专注的目录下的代码,一个是arch目录下的x86,支持不同cpu体系架构的源代码:第二个是 ...