Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 17497   Accepted: 7398

Description

Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or more trees. Define the balance of a node to be the size of the largest tree in the forest T created by deleting that node from T. 
For example, consider the tree: 

Deleting node 4 yields two trees whose member nodes are {5} and {1,2,3,6,7}. The larger of these two trees has five nodes, thus the balance of node 4 is five. Deleting node 1 yields a forest of three trees of equal size: {2,6}, {3,7}, and {4,5}. Each of these trees has two nodes, so the balance of node 1 is two.

For each input tree, calculate the node that has the minimum balance. If multiple nodes have equal balance, output the one with the lowest number.

Input

The first line of input contains a single integer t (1 <= t <= 20), the number of test cases. The first line of each test case contains an integer N (1 <= N <= 20,000), the number of congruence. The next N-1 lines each contains two space-separated node numbers that are the endpoints of an edge in the tree. No edge will be listed twice, and all edges will be listed.

Output

For each test case, print a line containing two integers, the number of the node with minimum balance and the balance of that node.

Sample Input

1
7
2 6
1 2
1 4
4 5
3 7
3 1

Sample Output

1 2

Source

 
 
 
 
题意就是找树的重心,然后通过树的重心的概念,找到树的重心,删掉之后子树是最平衡的。直接贴的模板。
 
代码:
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<bitset>
#include<cassert>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<deque>
#include<iomanip>
#include<list>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int,int> pii; const double PI=acos(-1.0);
const double eps=1e-;
const ll mod=1e9+;
const int inf=0x3f3f3f3f;
const int maxn=1e5+;
const int maxm=+;
#define ios ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); int n,father;
int siz[maxn];//siz保存每个节点的子树大小
bool vist[maxn];
int point=inf,minsum=-;//minsum表示切掉重心后最大连通块的大小
vector<int>G[maxn]; void DFS(int u,int x)//遍历到节点x,x的父亲是u
{
siz[x]=;
bool flag=true;
for(int i=;i<G[x].size();i++){
int v=G[x][i];
if(!vist[v]){
vist[v]=true;
DFS(x,v);//访问子节点。
siz[x]+=siz[v];//回溯计算本节点的siz
if(siz[v]>n/) flag=false;//判断节点x是不是重心。
}
}
if(n-siz[x]>n/) flag=false;//判断节点x是不是重心。
if(flag&&x<point) point=x,father=u;//这里写x<point是因为本题中要求节点编号最小的重心。
} void init()
{
memset(vist,false,sizeof(vist));
memset(siz,,sizeof(siz));
minsum=-;
point=inf;
for(int i=;i<maxn;i++) G[i].clear();
} int main()
{
int t;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
init();
for(int i=;i<n;i++){
int u,v;
scanf("%d%d",&u,&v);
G[u].push_back(v);
G[v].push_back(u);
}
vist[]=;
DFS(-,);//任意选取节点作为根,根节点的父亲是-1。
for(int i=;i<G[point].size();i++)
if(G[point][i]==father) minsum=max(minsum,n-siz[point]);
else minsum=max(minsum,siz[G[point][i]]);
printf("%d %d\n",point,minsum);
}
return ;
}

POJ 1655.Balancing Act-树的重心(DFS) 模板(vector存图)的更多相关文章

  1. POJ 1655 Balancing Act 树的重心

    Balancing Act   Description Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. ...

  2. POJ 1655 - Balancing Act 树型DP

    这题和POJ 3107 - Godfather异曲同工...http://blog.csdn.net/kk303/article/details/9387251 Program: #include&l ...

  3. POJ.1655 Balancing Act POJ.3107 Godfather(树的重心)

    关于树的重心:百度百科 有关博客:http://blog.csdn.net/acdreamers/article/details/16905653 1.Balancing Act To POJ.165 ...

  4. poj 1655 Balancing Act 求树的重心【树形dp】

    poj 1655 Balancing Act 题意:求树的重心且编号数最小 一棵树的重心是指一个结点u,去掉它后剩下的子树结点数最少. (图片来源: PatrickZhou 感谢博主) 看上面的图就好 ...

  5. POJ 1655 Balancing Act【树的重心模板题】

    传送门:http://poj.org/problem?id=1655 题意:有T组数据,求出每组数据所构成的树的重心,输出这个树的重心的编号,并且输出重心删除后得到的最大子树的节点个数,如果个数相同, ...

  6. 『Balancing Act 树的重心』

    树的重心 我们先来认识一下树的重心. 树的重心也叫树的质心.找到一个点,其所有的子树中最大的子树节点数最少,那么这个点就是这棵树的重心,删去重心后,生成的多棵树尽可能平衡. 根据树的重心的定义,我们可 ...

  7. POJ 1655 - Balancing Act - [DFS][树的重心]

    链接:http://poj.org/problem?id=1655 Time Limit: 1000MS Memory Limit: 65536K Description Consider a tre ...

  8. POJ 1655 Balancing Act【树的重心】

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14251   Accepted: 6027 De ...

  9. POJ 1655.Balancing Act 树形dp 树的重心

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14550   Accepted: 6173 De ...

随机推荐

  1. springboot:Spring boot中mongodb的使用(山东数漫江湖)

    mongodb是最早热门非关系数据库的之一,使用也比较普遍,一般会用做离线数据分析来使用,放到内网的居多.由于很多公司使用了云服务,服务器默认都开放了外网地址,导致前一阵子大批 MongoDB 因配置 ...

  2. Super A^B mod C (快速幂+欧拉函数+欧拉定理)

    题目链接:http://acm.fzu.edu.cn/problem.php?pid=1759 题目:Problem Description Given A,B,C, You should quick ...

  3. C题 hdu 1408 盐水的故事

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1408 盐水的故事 Time Limit: 2000/1000 MS (Java/Others)     ...

  4. mysql增删

    create table msg (id int, name varchar(10)); 插入语句 insert into msg values(1,'root'); insert into msg( ...

  5. perl6中函数参数(2)

    use v6; #如果参数是可选的, 可以在后面加个?后定义 sub Choo($x, $y?){ say $x+$y; } Choo(); Choo(,); #具名参数, 也就是字典形式的调用 su ...

  6. Low overhead memory space management

    Methods, apparatus, and systems, including computer programs encoded on a computer storage medium, m ...

  7. 深入分析_linux_spinlock_实现机制【转】

    转自:http://blog.csdn.net/electrombile/article/details/51289813 在 x86 平台上,spinlock 主要通过处理器的 lock 指令前缀实 ...

  8. vim查找/替换字符串【转】

    转自:http://www.cnblogs.com/GODYCA/archive/2013/02/22/2922840.html vi/vim 中可以使用 :s 命令来替换字符串.该命令有很多种不同细 ...

  9. Linux进程的创建函数fork()及其fork内核实现解析

    进程的创建之fork() Linux系统下,进程可以调用fork函数来创建新的进程.调用进程为父进程,被创建的进程为子进程. fork函数的接口定义如下: #include <unistd.h& ...

  10. Tabular DataStream protocol 协议

    Tabular DataStream protocol 协议 Freetds 创建过程 https://wenku.baidu.com/view/2076cbfaaef8941ea76e0576.ht ...