石子合并(一)

时间限制:1000 ms  |  内存限制:65535 KB
难度:3
 
描述
    有N堆石子排成一排,每堆石子有一定的数量。现要将N堆石子并成为一堆。合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆。求出总的代价最小值。
 
输入
有多组测试数据,输入到文件结束。
每组测试数据第一行有一个整数n,表示有n堆石子。
接下来的一行有n(0< n <200)个数,分别表示这n堆石子的数目,用空格隔开
输出
输出总代价的最小值,占单独的一行
样例输入
3
1 2 3
7
13 7 8 16 21 4 18
样例输出
9
239
来源
经典问题
上传者
TC_胡仁东
代码:
//思路就是从小区间扩大到大区间,最初两个数合并然后区间扩大1就是3个数合并,但因为3个的包含了
//2个的子区间,因此还是合并2个数,再扩大1就是4个数合并........
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int inf=0x7fffffff;
int n,a[],sum[],dp[][];
int main()
{
while(scanf("%d",&n)==){
sum[]=;
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
sum[i]=sum[i-]+a[i];
dp[i][i]=;
}
for(int i=;i<=n;i++){
for(int j=i-;j>=;j--){
dp[j][i]=inf;
for(int k=j;k<i;k++){
dp[j][i]=min(dp[j][i],dp[j][k]+dp[k+][i]+sum[i]-sum[j-]);
}
}
}
printf("%d\n",dp[][n]);
}
return ;
}

NYOJ 737DP的更多相关文章

  1. NYOJ 1007

    在博客NYOJ 998 中已经写过计算欧拉函数的三种方法,这里不再赘述. 本题也是对欧拉函数的应用的考查,不过考查了另外一个数论基本定理:如何用欧拉函数求小于n且与n互质所有的正整数的和. 记eule ...

  2. NYOJ 998

    这道题是欧拉函数的使用,这里简要介绍下欧拉函数. 欧拉函数定义为:对于正整数n,欧拉函数是指不超过n且与n互质的正整数的个数. 欧拉函数的性质:1.设n = p1a1p2a2p3a3p4a4...pk ...

  3. NYOJ 333

    http://www.cppblog.com/RyanWang/archive/2009/07/19/90512.aspx?opt=admin 欧拉函数 E(x)表示比x小的且与x互质的正整数的个数. ...

  4. NYOJ 99单词拼接(有向图的欧拉(回)路)

    /* NYOJ 99单词拼接: 思路:欧拉回路或者欧拉路的搜索! 注意:是有向图的!不要当成无向图,否则在在搜索之前的判断中因为判断有无导致不必要的搜索,以致TLE! 有向图的欧拉路:abs(In[i ...

  5. nyoj 10 skiing 搜索+动归

    整整两天了,都打不开网页,是不是我提交的次数太多了? nyoj 10: #include<stdio.h> #include<string.h> ][],b[][]; int ...

  6. 简答哈希实现 (nyoj 138 找球号2)

    例题链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=138 代码目的:复习哈希用 代码实现: #include "stdio.h&qu ...

  7. nyoj 284 坦克大战 简单搜索

    题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=284 题意:在一个给定图中,铁墙,河流不可走,砖墙走的话,多花费时间1,问从起点到终点至少 ...

  8. nyoj 170 网络的可靠性

    题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=170 思路:统计每个节点的度,将度为1的节点消去所需要的最少的边即为答案. 代码: #in ...

  9. nyoj 139 我排第几个--康拓展开

    我排第几个 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 现在有"abcdefghijkl”12个字符,将其所有的排列中按字典序排列,给出任意一种排列,说 ...

随机推荐

  1. Python3 Tkinter-Scale

    1.创建 from tkinter import * root=Tk() Scale(root).pack() root.mainloop() 2.参数 from tkinter import * r ...

  2. Python中的eval

    Python中的eval方法接受一个字符串参数,并且把字符串里面的内容当成Python代码来执行: eval的缺点是执行速度慢,并且会有安全风险

  3. 《剑指Offer》题六十一~题六十八

    六十一.扑克牌中的顺子 题目:从扑克牌中随机抽5张牌,判断是不是一个顺子,即这5张牌是不是连续的.2~10为数字本身,A为1,J为11,Q为12,K为13,而大.小王可以看成任意数字. 六十二.圆圈中 ...

  4. Bus of Characters(栈和队列)

    In the Bus of Characters there are nn rows of seat, each having 22 seats. The width of both seats in ...

  5. 20145214 《Java程序设计》第1周学习总结

    20145214 <Java程序设计>第1周学习总结 教材学习内容总结 第一章 了解了Java的诞生和版本演进的历史,目前的最新版本是Java SE8. java的三大平台分别是Java ...

  6. iOS-cocoapods使用方法

    1.CocoaPods的安装及使用: http://code4app.com/article/cocoapods-install-usage http://objccn.io/issue-6-4/ h ...

  7. 自定义类属性设置及setter、getter方法的内部实现

    属性是可以说是面向对象语言中封装的一个体现,在自定义类中设置属性就相当于定义了一个私有变量.设置器(setter方法)以及访问器(getter方法),其中无论是变量的定义,方法的声明和实现都是系统自动 ...

  8. yum 安装 redis php-redis

    yum 安装 redis php-redis   redis和php-redis在官方源上是没有的,需要安装其他的源,其他源的地址为 http://mirrors.ustc.edu.cn/fedora ...

  9. Jenkins系列-Jenkins忘记密码的修复方法

    找回 admin 用户的密码后,可以登录系统修改其他用户的密码. 1. Jenkins 目录结构 Jenkins 没有使用数据库,所有的信息都保存在 JENKINS_HOME 目录下的文件中.其中 J ...

  10. C#下Label的多行显示

    效果如图 1. tableLayout 三行两列 第一行 存放二维码的信息 第二行空白,用于分割 第三行存储LOGO信息 2. Lable4个,Dock属性都为Fill 第一列TextAlign使用M ...