import java.util.Scanner;
/**
* @author 冰樱梦
* 时间:2018年下半年
* 题目:计算gcd
*
*/
public class Exercise07_14 {
public static void main(String[] args){
int[] number=new int[5];
Scanner input=new Scanner(System.in);
System.out.println("输入5个数");
for(int i=0;i<5;i++){
number[i]=input.nextInt();
}
System.out.println("最大公约数为: "+gcd(number));
} //返回最大公约数
public static int gcd(int... numbers){
int min=numbers[0];
int sum=0,gcd=0;
for(int i=1;i<numbers.length;i++){
if(min>numbers[i]){
min=numbers[i];
}
}
for(int i=1;i<=min;i++){
for(int j=0;j<numbers.length;j++){
if(numbers[j]%i==0) sum++;
}
if(sum==numbers.length){
gcd=i;
}
sum=0;
}
return gcd;
}
}

计算gcd Exercise07_14的更多相关文章

  1. 欧几里德算法gcd及其拓展终极解释

    这个困扰了自己好久,终于找到了解释,还有自己改动了一点点,耐心看完一定能加深理解   扩展欧几里德算法-求解不定方程,线性同余方程. 设过s步后两青蛙相遇,则必满足以下等式: (x+m*s)-(y+n ...

  2. 有关Gcd,Lcm的一点小结论

    先介绍两个: 大数的Gcd Stein+欧几里德 function stein(a,b:int64):int64; begin if a<b then exit(stein(b,a)); the ...

  3. [Cerc2013]Magical GCD

    https://vjudge.net/problem/UVA-1642 题意:在一个序列中,找出一段连续的序列,使得长度*gcd最大 固定右端点,当左端点从左向右移动时,gcd不变或变大 gcd相同时 ...

  4. 简单数论总结1——gcd与lcm

    并不重要的前言 最近学习了一些数论知识,但是自己都不懂自己到底学了些什么qwq,在这里把知识一并总结起来. 也不是很难的gcd和lcm 显而易见的结论: 为什么呢? 根据唯一分解定理: a和b都可被分 ...

  5. 【数论数学】【P2152】【SDOI2009】Super GCD

    传送门 Description Sheng bill有着惊人的心算能力,甚至能用大脑计算出两个巨大的数的GCD(最大公约 数)!因此他经常和别人比赛计算GCD.有一天Sheng bill很嚣张地找到了 ...

  6. BZOJ1876 [SDOI2009]SuperGCD 【高精 + GCD优化】

    题目 Sheng bill有着惊人的心算能力,甚至能用大脑计算出两个巨大的数的GCD(最大公约 数)!因此他经常和别人比 赛计算GCD.有一天Sheng bill很嚣张地找到了你,并要求和你比 赛,但 ...

  7. 【C/C++】计算两个整数的最大公约数和最小公倍数

    算法一 任何>1的整数都可以写成一个或多个素数因子乘积的形式,且素数乘积因子以非递减序出现. 则整数x,y可以分别标记为:x=p1x1p2x2...pmxm y=p1y1p2y2...pmym ...

  8. HDU 5381 The sum of gcd (技巧,莫队算法)

    题意:有一个含n个元素的序列,接下来有q个询问区间,对每个询问区间输出其 f(L,R) 值. 思路: 天真单纯地以为是道超级水题,不管多少个询问,计算量顶多就是O(n2) ,就是暴力穷举每个区间,再直 ...

  9. *P2398 GCD SUM[数论]

    题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 解析 给出n求sum. gcd(x,y)表示x,y的最大公约数. 直接枚举复杂度为\(O(n^2)\),显然无 ...

随机推荐

  1. hdu 2680 Choose the best route (dijkstra算法 最短路问题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2680 Choose the best route Time Limit: 2000/1000 MS ( ...

  2. 模型验证与模型集成(Ensemble)

    作者:吴晓军 原文:https://zhuanlan.zhihu.com/p/27424282 模型验证(Validation) 在Test Data的标签未知的情况下,我们需要自己构造测试数据来验证 ...

  3. 通过call_usermodehelper()在内核态执行用户程序【转】

    转自:http://edsionte.com/techblog/archives/category/linux%E5%86%85%E6%A0%B8%E7%BC%96%E7%A8%8B 背景 如何在Li ...

  4. 排名函数row_number() over(order by)用法

    1. 定义 简单的说row_number()从1开始,为每一条分组记录返回一个数字,这里的ROW_NUMBER() OVER (ORDER BY [列名]DESC) 是先把[列名]降序排列,再为降序以 ...

  5. linux的基本的命令行操作

    linux的基本的命令行操作 第一步前登陆你的服务器 //创建文件夹的方法 mkdir 文件名 //进入指定文件夹 cd 文件名 //查看文件夹下的内容 ls or ll // 查看当前的路径 pwd ...

  6. MACBOOK 总是断网怎么办

    MACBOOK 连接 wifi 老是断网.焦躁不安 看图,二个方法,第一就搞定,

  7. [bugfix]copy属性参数将NSMutableArray变为NSArray类型

    问题:NSMutableArray 声明为 copy 属性参数后即使接受NSMutableArray变量依然为NSArray变量 测试: 属性申明为: 1 @property (nonatomic, ...

  8. leetcode 之Linked List Cycle(24)

    两个思路,一是用哈希表记录每个结点是还被访问过:二是定义两个快.慢指针,如果存在环的话,两个指针必定会在某位结点相遇. bool linkListNode(ListNode *head) { List ...

  9. php设计模式四 ---- 原型模式

    1.简介 用于创建重复的对象,同时又能保证性能.这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式 意图:用原型实例指定创建对象的种类,并且通过拷贝这些原型创建新的对象. 主要解决:在运 ...

  10. django使用JWT保存用户登录信息

    在使用前必须弄明白JWT的原理,原理可以看我的另一篇博文:https://www.cnblogs.com/chichung/p/9966027.html JWT的流程 1.签发JWT 在用户正确输入账 ...