【题目描述】

给定n(N<=100),编程计算有多少个不同的n轮状病毒。

【输入格式】

第一行有1个正整数n。

【输出格式】

将编程计算出的不同的n轮状病毒数输出

【样例输入】

3

【样例输出】

16

【题目来源】

耒阳大世野(衡阳八中) OJ 1002

(福建省选赛2007)

【分析】

从“各原子有唯一的信息通道”不难看出,每种轮状病毒对应着轮状基的一棵生成树。一般图的生成树计数可以用Matrix-Tree 定理求解,但这里的图比较特殊,用Matrix-Tree未免有些小题大做, 我们可以用组合递推的方法求解。

先设$f(n)$为n轮状基上删去一条弧得到的“缺口轮”上的生成树个数,再设$S(n) = \sum \limits_{i = 1}^n {f(i)}$. 于是就有:

$$\begin{array}{F} f(0) = f(1) = 1\\ f(n) = 2f(n-1) + \sum_{i=0}^{n-2} f(i) = f(n-1) + S(n-1) + 1 \end{array}$$

$$ans(n) = f(n) + 2\sum_{i = 1}^{n-1}f(i) = S(n) + S(n-1)$$

    (这个公式我推了一上午我会说?)

考虑到n最大为100,答案会超过long long的范围,这里的状态值应用高精度类存储。

 1 /**************************************************************
 2     Problem: 1002
 3     User: 935671154
 4     Language: C++
 5     Result: Accepted
 6     Time:44 ms
 7     Memory:2068 kb
 8 ****************************************************************/
 9  
 //Author : Asm.Def
 #include <iostream>
 #include <cctype>
 #include <cstdio>
 #include <vector>
 #include <algorithm>
 #include <cmath>
 #include <queue>
 using namespace std;
 inline void getd(int &x){
     char c = getchar();
     bool minus = ;
     while(!isdigit(c) && c != '-')c = getchar();
     if(c == '-')minus = , c = getchar();
     x = c - '';
     while(isdigit(c = getchar()))x = x *  + c - '';
     if(minus)x = -x;
 }
 /*======================================================*/
 const int maxn = ;
  
 struct BigN{
     #define base 10000
     #define maxl 1000
     int A[maxl], len;
     BigN(){len = , A[] = ;}
     BigN &operator = (const BigN &x){
         len = ;
         while(len < x.len){A[len] = x.A[len]; ++len;}
         return *this;
     }
     BigN &operator = (int k){len = ;A[] = k; return *this;}
     BigN &operator += (const BigN &x){
         int i, mor = ;
         for(i = ;i < x.len || mor;++i){
             if(i < len)mor += A[i];
             if(i < x.len)mor += x.A[i];
             A[i] = mor % base;
             mor /= base;
         }
         if(i > len)len = i;
         return *this;
     }
 }f[maxn], S[maxn];
  
 inline void work(int k){
     int i;
     if(!k){printf("0\n");return;}
     f[] = , f[] = , S[] = ;
     if(k == ){printf("1\n");return;}
     for(i = ;i <= k;++i){
         f[i] = ; f[i] += f[i-]; f[i] += S[i-];
         S[i] = S[i-]; S[i] += f[i];
     }
     S[k] += S[k-];
     i = S[k].len - ;
     printf("%d", S[k].A[i]);
     while(i)
         printf("%04d", S[k].A[--i]);
     putchar('\n');
 }
      
 int main(){
     #if defined DEBUG
     freopen("test", "r", stdin);
     #endif
     int k;
     getd(k);
      
     work(k);
      
     #if defined DEBUG
     cout << endl << (double)clock()/CLOCKS_PER_SEC << endl;
     #endif
     return ;
 }

高精度 + 递推

[BZOJ1002](FJOI 2007) 轮状病毒的更多相关文章

  1. BZOJ 1002 FJOI 2007 轮状病毒 暴力+找规律+高精度

    题目大意: 思路:基尔霍夫矩阵求生成树个数,不会. 可是能够暴力打表.(我才不会说我调试force调试了20分钟... CODE(force.cc): #include <cstdio> ...

  2. 【BZOJ1002】[ZJOI2006]轮状病毒

    [BZOJ1002]轮状病毒 题面 bzoj 题解 统计个数显然直接矩阵树定理,找规律截这里 打标如下: #include <iostream> #include <cstdlib& ...

  3. 【BZOJ1002】[FJOI2007]轮状病毒 递推+高精度

    Description 给定n(N<=100),编程计算有多少个不同的n轮状病毒. Input 第一行有1个正整数n. Output 将编程计算出的不同的n轮状病毒数输出 Sample Inpu ...

  4. 【bzoj1002】[FJOI2007]轮状病毒

    1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4381  Solved: 2393[Submit][Statu ...

  5. 【bzoj1002】[FJOI2007]轮状病毒 矩阵树定理+高精度

    题目描述 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图所示 N轮状病 ...

  6. BZOJ 1002 [ FJOI 2007 ]

    -------------------------萌萌哒分割线------------------------- 题目很容易看懂,数据范围也不大.当然可以卡过暴力的人了. 在n=1时很明显是一种,如下 ...

  7. bzoj1002:[FJOI2007]轮状病毒

    思路:一道很裸的生成树计数问题,然而要高精度,而且听说直接行列式求值会被卡精度,所以可以模拟行列式求值的过程得到递推公式:f[i]=3*f[i-1]-f[i-2]+2,证明详见vfk博客: http: ...

  8. 【bzoj1002】 [FJOI2007]轮状病毒DP

    递推+环状特殊处理+高精度   #include<algorithm> #include<iostream> #include<cstdlib> #include& ...

  9. BZOJ第一页刷题计划

    BZOJ第一页刷题计划 已完成:67 / 90 [BZOJ1000]A+B Problem:A+B: [BZOJ1001][BeiJing2006]狼抓兔子:最小割: [BZOJ1002][FJOI2 ...

随机推荐

  1. ioctl( ) 函数

    ioctl( )函数 本函数影响由fd参数引用的一个打开的文件. #include<unistd.h> int ioctl( int fd, int request, .../* void ...

  2. linux percpu机制解析【转】

    转自:http://blog.csdn.net/wh8_2011/article/details/53138377 一.概述 每cpu变量是最简单也是最重要的同步技术.每cpu变量主要是数据结构数组, ...

  3. (十八)Linux开机启动管理---systemd使用

    常用命令 使某服务自动启动 systemctl enable httpd.service 使某服务不自动启动 systemctl disable httpd.service 检查服务状态 system ...

  4. Educational Codeforces Round 23 补题小结

    昨晚听说有教做人场,去补了下玩. 大概我的水平能做个5/6的样子? (不会二进制Trie啊,我真菜) A. 傻逼题.大概可以看成向量加法,判断下就好了. #include<iostream> ...

  5. 使用OC swift 截取路径中的最后的文件名

    使用 OC swift 截取路径中的最后的文件名 如何截取下面路径中最后的文件名 AppDelegate.swift /Users/XXX/Desktop/Swift/swift02/code/02- ...

  6. TCP三次握手和四次挥手及用户访问网页流程

    TCP报文格式 TCP通信是通过报文进行的,首先要了解TCP报文的格式. 序号:Seq序号,占32位,用来标识从TCP源端向目的端发送的字节流,发起方发送数据时对此进行标记. 确认序号:Ack序号,占 ...

  7. IE中部分版本的浏览器对Select标签设置innerHTML无效的问题

    这样写的代码:document.getElementById('data_list').innerHTML = data;//data是ajax返回的数据 结果发现在ie10的兼容模式下面下拉框没有内 ...

  8. liunx命令大全

    Linux常用命令大全   Linux常用命令大全(非常全!!!) 最近都在和Linux打交道,感觉还不错.我觉得Linux相比windows比较麻烦的就是很多东西都要用命令来控制,当然,这也是很多人 ...

  9. beatfullsoup

    阅读目录 一 介绍 二 基本使用 三 遍历文档树 四 搜索文档树 五 修改文档树 六 总结 一 介绍 Beautiful Soup 是一个可以从HTML或XML文件中提取数据的Python库.它能够通 ...

  10. 机器学习方法(四):决策树Decision Tree原理与实现技巧

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 前面三篇写了线性回归,lass ...