题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=1395

题目大意:

题目中给出输入一个整数n,要求一个最小整数的x,使得2^x mod n=1;

解题思路:

2^x = 1(mod n)就是求2模上n的阶。

传送门:阶与原根

如果n是偶数或者是1,答案一定不存在

如果是偶数,2^x也是偶数,偶数模上偶数不可能为1。

如果n为1,那么模的结果一定为0。

如果n是奇数,那么可以求阶,也可以暴力(数据水)

求阶的方法:

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int a[];
int euler_phi(int n)//求单个
{
int m = (int)sqrt(n + 0.5);
int ans = n;
for(int i = ; i <= m; i++)if(n % i == )
{
ans = ans / i * (i - );
while(n % i == )n /= i;
}
if(n > )ans = ans / n * (n - );
return ans;
}
ll pow(ll a, ll b, ll m)
{
a %= m;
ll ans = ;
while(b)
{
if(b & )ans = ans * a % m;
a = a * a % m;
b /= ;
}
return ans % m;
}
int main()
{
int n;
while(cin >> n)
{
int tot = ;
if(n % == || n == )
{
printf("2^? mod %d = 1\n", n);
continue;
}
int t = euler_phi(n);
//cout<<t<<endl;
for(int i = ; i * i <= t; i++)
{
if(t % i == )
{
a[tot++] = i;
if(i * i != t)a[tot++] = t / i;
}
}
sort(a, a + tot);
//for(int i = 0; i < tot; i++)printf("%d ", a[i]);
for(int i = ; i < tot; i++)
{
if(pow(, a[i], n) == )
{
printf("2^%d mod %d = 1\n", a[i], n);
break;
}
}
}
return ;
}

hdu-1395 2^x mod n = 1---求阶(欧拉函数)的更多相关文章

  1. √n求单值欧拉函数

    基本定理: 首先看一下核心代码: 核心代码 原理解析: 当初我看不懂这段代码,主要有这么几个问题: 1.定理里面不是一开始写了一个n*xxx么?为什么代码里没有*n? 2.ans不是*(prime[i ...

  2. 求逆欧拉函数(arc)

    已知欧拉函数计算公式 初始公式:φ(n)=n*(1-1/p1)*(1-1/p2).....*(1-1/pm)   又 n=p1^a1*p2^a2*...*ps^as  欧拉函数是积性函数 那么:φ(n ...

  3. Super A^B mod C (快速幂+欧拉函数+欧拉定理)

    题目链接:http://acm.fzu.edu.cn/problem.php?pid=1759 题目:Problem Description Given A,B,C, You should quick ...

  4. O(n)求素数,求欧拉函数,求莫比乌斯函数,求对mod的逆元,各种求

    筛素数 void shai() { no[1]=true;no[0]=true; for(int i=2;i<=r;i++) { if(!no[i]) p[++p[0]]=i; int j=1, ...

  5. (hdu step 7.2.1)The Euler function(欧拉函数模板题——求phi[a]到phi[b]的和)

    题目: The Euler function Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...

  6. hdu 2824 The Euler function(欧拉函数)

    题目链接:hdu 2824 The Euler function 题意: 让你求一段区间的欧拉函数值. 题解: 直接上板子. 推导过程: 定义:对于正整数n,φ(n)是小于或等于n的正整数中,与n互质 ...

  7. hdu1395 2^x mod n = 1(欧拉函数)

    2^x mod n = 1 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  8. GuGuFishtion HDU - 6390 (欧拉函数,容斥)

    GuGuFishtion \[ Time Limit: 1500 ms\quad Memory Limit: 65536 kB \] 题意 给出定义\(Gu(a, b) = \frac{\phi(ab ...

  9. HDU 6390 GuGuFishtion(莫比乌斯反演 + 欧拉函数性质 + 积性函数)题解

    题意: 给定\(n,m,p\),求 \[\sum_{a=1}^n\sum_{b=1}^m\frac{\varphi(ab)}{\varphi(a)\varphi(b)}\mod p \] 思路: 由欧 ...

  10. hdu 1395(欧拉函数)

    2^x mod n = 1 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

随机推荐

  1. freemarker实现通用布局的模板拆分与复用

    原文:http://www.hawu.me/coding/733 一.基础页面布局 假设我们项目页面的通用布局如下图所示: 实现这样的布局的基本html代码如下:           XHTML   ...

  2. Hibernate 集合映射

    Set映射: <?xml version="1.0" encoding="utf-8"?> <!DOCTYPE hibernate-mappi ...

  3. Java入门系列-21-多线程

    什么是线程 在操作系统中,一个应用程序的执行实例就是进程,进程有独立的内存空间和系统资源,在任务管理器中可以看到进程. 线程是CPU调度和分派的基本单位,也是进程中执行运算的最小单位,可完成一个独立的 ...

  4. [转].NET Core dotnet 命令大全

    本文转自:http://www.cnblogs.com/linezero/p/dotnet.html https://docs.microsoft.com/en-us/dotnet/articles/ ...

  5. dns-prefetch使用整理

    网站投放百度.谷歌联盟广告,百度分享.推荐等,由于不同的DNS请求,会增加了网页加载时间,用户等待时间过长会造成跳出率增高,对SEO有一定影响. DNS解析速度是造成页面延迟加载的最大的原因. DNS ...

  6. ASP.NET Visual Studio2010 发布Web网站问题详解

    今天研究了一下如何发布web网站,之前总是没耐心,遇到点问题就没心情搞了,今天总算有点耐心搞明白了.其实遇到的问题还是挺多的,网上也没有太全的解释,所以结合自己还有别人的方法进行一下总结. 环境:Wi ...

  7. Sqoop迁移Hadoop与RDBMS间的数据

    Sqoop是用来实现结构型数据(如:关系型数据库RDBMS)和Hadoop之间进行数据迁移的工具.它充分利用了MapReduce的并行特点以批处理的方式加快数据的传输,同时也借助MapReduce实现 ...

  8. Tomcat服务器配置和使用(三)

    https连接器 明白了互联网上的加密原理之后,下面来看看浏览器与服务器交互时,浏览器想将数据加密后再发送给服务器,那么该怎么做呢?服务器首先要向浏览器出示一份数字证书,浏览器看到数字证书后,就可以使 ...

  9. 在linux命令行利用SecureCRT上传下载文件

    一般来说,linux服务器大多是通过ssh客户端来进行远程的登陆和管理的,使用ssh登陆linux主机以后,如何能够快速的和本地机器进行文件的交互呢,也就是上传和下载文件到服务器和本地?与ssh有关的 ...

  10. fzu 2136 取糖果 好几种方法解决。

    Problem 2136 取糖果 Accept: 39    Submit: 101 Time Limit: 1000 mSec    Memory Limit : 32768 KB Problem ...