多重部分和问题 (dp)
题目描述
有n种不同大小的数字Ai,每种各Mi个。判断是否能从这些数字中选出若干个使它们的和恰好为K。
这个问题可以用DP求解,递推关系式的定义会影响最终的复杂度。
第一种定义:
dp[i+1][j],用前i种数字是否能加和成j
为了用前i种数字加和成j,也就需要能用前i-1种数字加和成j,j-Ai,···,j-MiAi中的某一种。由此我们可以定义如下递推关系:
dp[i+1][j]=(0<=k<=Mi且KAi<=j时存在使dp[i][j-kAi]为真的K)
#include<iostream>
#include<stdio.h>
using namespace std;
int n,K;
int a[100],m[100];///a表示数字大小,m表示这个数字的个数
bool dp[100][100];///dp数组
void solve()
{
dp[0][0]=true;
for(int i=0; i<n; i++)
for(int j=0; j<=K; j++)
for(int k=0; k<=m[i]&&k*a[i]<=j; k++)
dp[i+1][j]|=dp[i][j-k*a[i]];
if(dp[n][K])///dp[n][k]存在,即前n个数字能组成和K
printf("Yes\n");
else
printf("No\n");
}
int main()
{
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%d",&a[i]);
for(int i=0;i<n;i++)
scanf("%d",&m[i]);
scanf("%d",&K);
solve();
return 0;
}
但是这种方法的时间复杂度比较大,因为一般用DP求取bool结果的话会有不少浪费,在这个问题中,我们不仅要求出能否构成目标的和数,同时把得到时Ai这个数还剩下多少个可以使用计算出来,这样就可以减少复杂度。
定义 dp[i+1][j],用前i种数加和得到j时第i种数最多能剩余多少个(不能加和得到i的情况下为-1)。
按照如上所述的递推关系,这样如果前i-1个数加和能得到j的话,第i个数就可以留下Mi个。此外,前i种数加和出j-Ai时第i种数还剩下k(k>0)德华,用这i种数加和j时第i种数就能剩下k-1个。由此我们能得到如下递推:
dp[i+1][j]=Mi; (dp[i][j]>=0)
dp[i+1][j]=-1; (j<Ai或者dp[i+1][j-Ai]<=0)
dp[I+1][j]=dp[I+1][j-Ai]-1; (其他)
这样,只要看最终结果是否满足dp[n][K]>=0就知道答案啦。
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
int n,K;
int a[100],m[100];///a表示数字大小,m表示这个数字的个数
bool dp[100];///dp数组
void solve()
{
memset(dp,-1,sizeof(dp));
dp[0]=0;
for(int i=0; i<n; i++)
for(int j=0; j<=K; j++)
{
if(dp[j]>=0)///如果能组成数字j的话,
dp[j]=m[i];
else if(j<a[i]||dp[j-a[i]]<=0)
dp[j]=-1;
else
dp[j]=dp[j-a[i]]-1;
}
if(dp[K]>=0)
printf("Yes\n");
else
printf("No\n");
}
int main()
{
scanf("%d",&n);
for(int i=0; i<n; i++)
scanf("%d",&a[i]);
for(int i=0; i<n; i++)
scanf("%d",&m[i]);
scanf("%d",&K);
solve();
return 0;
}
多重部分和问题 (dp)的更多相关文章
- POJ 1742 Coins ( 经典多重部分和问题 && DP || 多重背包 )
题意 : 有 n 种面额的硬币,给出各种面额硬币的数量和和面额数,求最多能搭配出几种不超过 m 的金额? 分析 : 这题可用多重背包来解,但这里不讨论这种做法. 如果之前有接触过背包DP的可以自然想到 ...
- DP的初级问题——01包、最长公共子序列、完全背包、01包value、多重部分和、最长上升子序列、划分数问题、多重集组合数
当初学者最开始学习 dp 的时候往往接触的是一大堆的 背包 dp 问题, 那么我们在这里就不妨讨论一下常见的几种背包的 dp 问题: 初级的时候背包 dp 就完全相当于BFS DFS 进行搜索之后的记 ...
- 编程算法 - 多重部分和问题 代码(C)
多重部分和问题 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 有n种不同大小的数字a, 每种各m个. 推断能否够从这些数字之中选出若干使它们的 ...
- HDU2844(多重部分和)
Coins Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- 多重部分和 poj1742
Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar. ...
- 题解报告:hdu 2844 & poj 1742 Coins(多重部分和问题)
Problem Description Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. On ...
- 题解报告:hdu 1059 Dividing(多重背包、多重部分和问题)
Problem Description Marsha and Bill own a collection of marbles. They want to split the collection a ...
- POJ1742 coins 动态规划之多重部分和问题
原题链接:http://poj.org/problem?id=1742 题目大意:tony现在有n种硬币,第i种硬币的面值为A[i],数量为C[i].现在tony要使用这些硬币去买一块价格不超过m的表 ...
- POJ_1742_Coins_(动态规划,多重部分和)
描述 http://poj.org/problem?id=1742 n种不同面额的硬币 ai ,每种各 mi 个,判断可以从这些数字值中选出若干使它们组成的面额恰好为 k 的 k 的个数. 原型: n ...
- COJ 0557 4013多重部分和问题
4013多重部分和问题 难度级别:B: 运行时间限制:2000ms: 运行空间限制:262144KB: 代码长度限制:2000000B 试题描述 n种大小不同的数字 Ai,每种各Mi个,判断是否可以从 ...
随机推荐
- js 控制
js 制动控制 代码 是 :setInterval(function(){$(".egg").click();},1000); 使用方法:调出浏览器放控制台(console),一般 ...
- [计算机网络] C++模拟telnet登陆SMTP服务发送邮件过程
在百度文库中的<使用telnet协议收发邮件>,我们可以很清楚地看到如何通过telnet来进行发送邮件,下面是一些需要用到的命令,通过以下命令可以很容易实现邮件发送功能.为了更好地理解其中 ...
- linux 服务器丢包故障排查
项目开了个P2P服务器,但是运行一段时间就会出现丢包问题,具体表现为:1.udp丢包严重(一分钟收发分别1.5W) 2.ssh(用于运维指令)连接不上该服务器(超时) 3.服务器运行好像没什么异常,u ...
- 详细图解jQuery对象,以及如何扩展jQuery插件
详细图解jQuery对象,以及如何扩展jQuery插件 早几年学习前端,大家都非常热衷于研究jQuery源码.我还记得当初从jQuery源码中学到一星半点应用技巧的时候常会有一种发自内心的惊叹,“原来 ...
- POJ3254:Corn Fields——题解
http://poj.org/problem?id=3254 题面来自洛谷:https://www.luogu.org/problemnew/show/1879 农场主John新买了一块长方形的新牧场 ...
- POJ1375:Intervals——题解
http://poj.org/problem?id=1375 题目大意:有一盏灯,求每段被圆的投影所覆盖的区间. —————————————————————— 神题,卡精度,尝试用各种方法绕过精度都不 ...
- 如何区别java中的public,protected,default,private
================Public====================== 1>首先我们介绍public关键字,从字面意义上出发,public意为公共的,可见它的访问权限是很宽松的 ...
- BZOJ1999 NOIP2007 洛谷P1099 P2491 SDOI 2011
Description: 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各 ...
- [zhuan]Dalvik 分析 - Class加载篇
http://blog.csdn.net/zhangyun438/article/details/17192787 内容如下: Java 源代码经过编译后会生成后缀为class的文件,也即字节码文件. ...
- JavaScript去除空格trim()的原生实现
W3C那帮人的脑袋被驴踢了,直到javascript1.8.1才支持trim函数(与trimLeft,trimRight),可惜现在只有firefox3.5支持.由于去除字符串两边的空白实在太常用,各 ...