多重部分和问题 (dp)
题目描述
有n种不同大小的数字Ai,每种各Mi个。判断是否能从这些数字中选出若干个使它们的和恰好为K。
这个问题可以用DP求解,递推关系式的定义会影响最终的复杂度。
第一种定义:
dp[i+1][j],用前i种数字是否能加和成j
为了用前i种数字加和成j,也就需要能用前i-1种数字加和成j,j-Ai,···,j-MiAi中的某一种。由此我们可以定义如下递推关系:
dp[i+1][j]=(0<=k<=Mi且KAi<=j时存在使dp[i][j-kAi]为真的K)
#include<iostream>
#include<stdio.h>
using namespace std;
int n,K;
int a[100],m[100];///a表示数字大小,m表示这个数字的个数
bool dp[100][100];///dp数组
void solve()
{
dp[0][0]=true;
for(int i=0; i<n; i++)
for(int j=0; j<=K; j++)
for(int k=0; k<=m[i]&&k*a[i]<=j; k++)
dp[i+1][j]|=dp[i][j-k*a[i]];
if(dp[n][K])///dp[n][k]存在,即前n个数字能组成和K
printf("Yes\n");
else
printf("No\n");
}
int main()
{
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%d",&a[i]);
for(int i=0;i<n;i++)
scanf("%d",&m[i]);
scanf("%d",&K);
solve();
return 0;
}
但是这种方法的时间复杂度比较大,因为一般用DP求取bool结果的话会有不少浪费,在这个问题中,我们不仅要求出能否构成目标的和数,同时把得到时Ai这个数还剩下多少个可以使用计算出来,这样就可以减少复杂度。
定义 dp[i+1][j],用前i种数加和得到j时第i种数最多能剩余多少个(不能加和得到i的情况下为-1)。
按照如上所述的递推关系,这样如果前i-1个数加和能得到j的话,第i个数就可以留下Mi个。此外,前i种数加和出j-Ai时第i种数还剩下k(k>0)德华,用这i种数加和j时第i种数就能剩下k-1个。由此我们能得到如下递推:
dp[i+1][j]=Mi; (dp[i][j]>=0)
dp[i+1][j]=-1; (j<Ai或者dp[i+1][j-Ai]<=0)
dp[I+1][j]=dp[I+1][j-Ai]-1; (其他)
这样,只要看最终结果是否满足dp[n][K]>=0就知道答案啦。
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
int n,K;
int a[100],m[100];///a表示数字大小,m表示这个数字的个数
bool dp[100];///dp数组
void solve()
{
memset(dp,-1,sizeof(dp));
dp[0]=0;
for(int i=0; i<n; i++)
for(int j=0; j<=K; j++)
{
if(dp[j]>=0)///如果能组成数字j的话,
dp[j]=m[i];
else if(j<a[i]||dp[j-a[i]]<=0)
dp[j]=-1;
else
dp[j]=dp[j-a[i]]-1;
}
if(dp[K]>=0)
printf("Yes\n");
else
printf("No\n");
}
int main()
{
scanf("%d",&n);
for(int i=0; i<n; i++)
scanf("%d",&a[i]);
for(int i=0; i<n; i++)
scanf("%d",&m[i]);
scanf("%d",&K);
solve();
return 0;
}
多重部分和问题 (dp)的更多相关文章
- POJ 1742 Coins ( 经典多重部分和问题 && DP || 多重背包 )
题意 : 有 n 种面额的硬币,给出各种面额硬币的数量和和面额数,求最多能搭配出几种不超过 m 的金额? 分析 : 这题可用多重背包来解,但这里不讨论这种做法. 如果之前有接触过背包DP的可以自然想到 ...
- DP的初级问题——01包、最长公共子序列、完全背包、01包value、多重部分和、最长上升子序列、划分数问题、多重集组合数
当初学者最开始学习 dp 的时候往往接触的是一大堆的 背包 dp 问题, 那么我们在这里就不妨讨论一下常见的几种背包的 dp 问题: 初级的时候背包 dp 就完全相当于BFS DFS 进行搜索之后的记 ...
- 编程算法 - 多重部分和问题 代码(C)
多重部分和问题 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 有n种不同大小的数字a, 每种各m个. 推断能否够从这些数字之中选出若干使它们的 ...
- HDU2844(多重部分和)
Coins Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- 多重部分和 poj1742
Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar. ...
- 题解报告:hdu 2844 & poj 1742 Coins(多重部分和问题)
Problem Description Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. On ...
- 题解报告:hdu 1059 Dividing(多重背包、多重部分和问题)
Problem Description Marsha and Bill own a collection of marbles. They want to split the collection a ...
- POJ1742 coins 动态规划之多重部分和问题
原题链接:http://poj.org/problem?id=1742 题目大意:tony现在有n种硬币,第i种硬币的面值为A[i],数量为C[i].现在tony要使用这些硬币去买一块价格不超过m的表 ...
- POJ_1742_Coins_(动态规划,多重部分和)
描述 http://poj.org/problem?id=1742 n种不同面额的硬币 ai ,每种各 mi 个,判断可以从这些数字值中选出若干使它们组成的面额恰好为 k 的 k 的个数. 原型: n ...
- COJ 0557 4013多重部分和问题
4013多重部分和问题 难度级别:B: 运行时间限制:2000ms: 运行空间限制:262144KB: 代码长度限制:2000000B 试题描述 n种大小不同的数字 Ai,每种各Mi个,判断是否可以从 ...
随机推荐
- 什么是RESTFUL协议?
1,restful是Representational State Transfer的缩写,翻译过来是表现层状态转移.我的理解是去掉访问文件的格式,比如去掉文件为html的.html,而是采用路径的方式 ...
- 第51天:封装可视区域大小函数client
一.client 可视区域 offsetWidth: width + padding + border (披着羊皮的狼) clientWidth: width + ...
- Android Shimmer 发光微光动画
这是Facebook提供的一个类库(题外话http://code.facebook.com,这里有很多好玩有趣有用的Facebook开源的类库) 这么炫酷的发光动画效果,想必很多Android码农都会 ...
- 【题解】Atcoder ARC#85 E-MUL
……没啥可说的.最大权闭合子图,跑下dinic就好了…… #include <bits/stdc++.h> using namespace std; #define maxn 500000 ...
- 用Matlab对数据进行线性拟合算法
http://www.cnblogs.com/softlin/p/5965939.html 挖坑
- 【SPOJ】Highways(矩阵树定理)
[SPOJ]Highways(矩阵树定理) 题面 Vjudge 洛谷 题解 矩阵树定理模板题 无向图的矩阵树定理: 对于一条边\((u,v)\),给邻接矩阵上\(G[u][v],G[v][u]\)加一 ...
- ES6箭头函数总结
1. 箭头函数基本形式 let func = (num) => num; let func = () => num; let sum = (num1,num2) => num1 + ...
- vector去除重复的元素
vector<int> v; sort(v.begin(),v.end()); v.erase(unique(v.begin(), v.end()), v.end());
- Uncaught (in promise) DOMException: The play() request was interrupted by a call to pause().
解决方法: audio.load() let playPromise = audio.play() if (playPromise !== undefined) { playPromise.then( ...
- weakself的另一种写法
在不久前看AFNetworking的源码时候发现了这么一句: 1 2 3 4 5 6 7 8 9 10 // 不知道这行代码的使用场景的同学你该去自习看看ARC的注意事项和Block的使用了 // A ...