BZOJ2587 : [Ceoi2011]Team
将球员按限制从大到小排序,那么最优解中每支球队都是一个连续的区间。
设$f[i]$表示前$i$大的球员成功组队时,最多能组的队伍数,$g[i]$表示此时最大人数的最小值。
那么$f[i]=\max(f[j]+1),a[j]\geq i-j$,即$a[j]+j\geq i$。
注意到$a[j]+j>j$恒成立,所以可以使用链表来维护,当计算$f[a[j]+j]$时,才将$j$加入决策范围中。
此时需要维护决策中$f$的最大值,对于多个最大值,则要让$\max(g[j],i-j)$最小。
$1.$若$g[j]\leq i-j$,即$g[j]+j\leq i$,那么同样可以使用链表来维护,$j$最大的是最优决策。
$2.$若$g[j]>i-j$,那么这些$j$还在后面的链表里,使用堆来维护$g[j]$最小的$j$即可。
时间复杂度$O(n\log n)$。
#include<cstdio>
const int N=1000010,BUF=10000000,OUT=10000000;
char Buf[BUF],*buf=Buf,Out[OUT],*ou=Out;int Outn[30],Outcnt;
int n,i,j,x=-1,a[N],b[N],c[N],f[N],g[N],w[N],g0[N],nxt0[N],g1[N],nxt1[N],h[N],l;
inline void read(int&a){for(a=0;*buf<48;buf++);while(*buf>47)a=a*10+*buf++-48;}
inline void write(int x){
for(Outcnt=0;x;x/=10)Outn[++Outcnt]=x%10+48;
while(Outcnt)*ou++=Outn[Outcnt--];
}
inline void swap(int&a,int&b){int c=a;a=b;b=c;}
inline bool cmp(int x,int y){
if(f[x]!=f[y])return f[x]>f[y];
return g[x]<g[y];
}
inline void pop(){
h[1]=h[l--];
for(int i=1;;){
int t=h[i],j=0;
if((i<<1)<=l&&cmp(h[i<<1],t))t=h[j=i<<1];
if((i<<1|1)<=l&&cmp(h[i<<1|1],t))j=i<<1|1;
if(j)swap(h[i],h[j]),i=j;else return;
}
}
inline void add0(int x){
int y=x+b[x+1];
if(y>n)return;
nxt0[x]=g0[y];g0[y]=x;
}
inline void add1(int x){
h[++l]=x;
for(int i=l;i>1&&cmp(h[i],h[i>>1]);i>>=1)swap(h[i],h[i>>1]);
int y=x+g[x];
if(y>n)return;
nxt1[x]=g1[y];g1[y]=x;
}
inline void up(int y){
if(x<0){x=y;return;}
if(f[y]>f[x]||f[y]==f[x]&&y>x)x=y;
}
inline void use(int y){
int z=g[y]>i-y?g[y]:i-y;
if(f[y]+1>f[i])f[i]=f[y]+1,g[i]=z,w[i]=y;
else if(f[y]+1==f[i]&&z<g[i])g[i]=z,w[i]=y;
}
int main(){
fread(Buf,1,BUF,stdin);read(n);
for(i=1;i<=n;i++)read(a[i]),b[a[i]]++;
for(i=n;i;i--)b[i]+=b[i+1];
for(i=1;i<=n;i++)c[b[a[i]]--]=i;
for(i=1;i<=n;i++)b[i]=a[c[i]],f[i]=g0[i]=g1[i]=-1;
for(add0(f[0]=0),i=1;i<=n;i++){
for(j=g0[i];~j;j=nxt0[j])if(g[j]+j<=i)up(j);else add1(j);
for(j=g1[i];~j;j=nxt1[j])up(j);
if(~x)use(x);
while(l){
j=h[1];
if(g[j]+j>i){use(j);break;}
pop();
}
if(f[i]>0)add0(i);
}
write(f[n]);*ou++='\n';
while(n){
j=w[n];
write(n-j);
for(i=j+1;i<=n;i++)*ou++=' ',write(c[i]);
*ou++='\n';
n=j;
}
fwrite(Out,1,ou-Out,stdout);
return 0;
}
BZOJ2587 : [Ceoi2011]Team的更多相关文章
- bzoj2386 [CEOI2011] Team
题意 给你n个数,每个数的大小在1到n之间,要求把它们分成几组,每个数字的大小要小于等于它所在组中的数字总个数,问最多能分出多少组. 分析 首先把所有数字排序,比较显然的是最后一定存在一个最优解是按这 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- Configure a VLAN on top of a team with NetworkManager (nmcli) in RHEL7
SOLUTION VERIFIED September 13 2016 KB1248793 Environment Red Hat Enterprise Linux 7 NetworkManager ...
- Create a Team in RHEL7
SOLUTION VERIFIED September 13 2016 KB2620131 Environment Red Hat Enterprise Linux 7 NetworkManager ...
- Team Leader 你不再只是编码, 来炖一锅石头汤吧
h3{ color: #000; padding: 5px; margin-bottom: 10px; font-weight: bolder; background-color: #ccc; } h ...
- Configure bridge on a team interface using NetworkManager in RHEL 7
SOLUTION IN PROGRESS February 29 2016 KB2181361 environment Red Hat Enterprise Linux 7 Teaming,Bridg ...
- BZOJ 4742: [Usaco2016 Dec]Team Building
4742: [Usaco2016 Dec]Team Building Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 21 Solved: 16[Su ...
- 关于 feature team 的一些内容
矩阵式管理,是常见的经典管理架构.其最早起源于美国的航空航天部门,然后被美国人带到了日本,然后被日本人带到了台湾,然后台湾人带到大陆...矩阵管理最典型的特征是,组织架构按职能与专业划分,项目由跨越部 ...
- 病毒四度升级:安天AVL Team揭露一例跨期两年的电信诈骗进化史
自2014年9月起,安天AVL移动安全团队持续检测到一类基于Android移动平台的间谍类病毒,病毒样本大多伪装成名为"最高人民检察院"的应用.经过反编译逆向分析以及长期的跟踪调查 ...
随机推荐
- python 利用split读取文本文件中每一行的数字并保存至相应文件夹
import re from numpy import * def getStr(file_path,file_path1): fp = open(file_path, 'r') op = open( ...
- Pthon面向对象之基础
命名空间 class Course: language = 'Chinese' def __init__(self,teacher,name,period,price): self.teacher = ...
- fg、bg、jobs、&、nohup、ctrl+z、ctrl+c 命令
fg.bg.jobs.&.nohup.ctrl+z.ctrl+c 命令 一.& 加在一个命令的最后,可以把这个命令放到后台执行,如 watch -n 10 sh test.sh &am ...
- thinkphp5.0和thinkphp3.2的区别不同之处
先看目录结构: thinkphp 5.0的目录结构, 文档:https://www.kancloud.cn/manual/thinkphp5/118008 project 应用部署目录 ├─appli ...
- 5336: [TJOI2018]party
题解: 比较水啦..dp套dp f[i][j][k]表示枚举了前i位,最大公共子序列匹配状态为j,noi匹配到了第k位 因为g[j]和g[j+1]最多差1 所以可以状压成j 然后内层再dp一下搞出下一 ...
- BZOJ 4282(慎二的随机数列
题解: 网上题解还没看 我的方法是用平衡树维护一个单调栈 由于N用了一定是赚的 所以它的作用是让f[i+1]=f[i]+1 这个是可以记录的 就跟noip蚯蚓那题一样 然后插入一个值的时候查询前面的最 ...
- CentOS7.5安装nodejs 转
CentOS7.5安装nodejs CentOS安装NodeJS 在CentOS下安装NodeJS有以下几种方法.使用的CentOS版本为7.2.CentOS其他版本的NodeJS安装大同小异,也可以 ...
- Mysql my.cnf配置文件记录
一.参数 1.max_binlog_size = 1G #binlog大小 2. #slave不需要同步数据库 binlog-ignore-db=information_schema bin ...
- day20 模块-sys,time,collection
所有常用模块的用法: http://www.cnblogs.com/Eva-J/articles/7228075.html 前情回顾: # 常用模块 # 常用模块 —— 东西多 # 异常处理 # 什 ...
- Maya Max python PySide集成 shiboken版本对应关系
Maya_Max _python_PySide集成_shiboken版本对应关系 1.如何查看 Maya Max 集成的 Python版本: Maya:在 Maya 的安装目录下的 bin 文件夹中找 ...