题意

题目链接

Sol

知道FFT能做字符串匹配的话这就是个裸题了吧。。

考虑把B翻转过来,如果\(\sum_{k = 0}^M (B_{i - k} - A_k)^2 * B_{i-k}*A_k = 0\)

那么说明能匹配。然后拆开三波FFT就行了

/*

*/
#include<bits/stdc++.h>
#define LL long long
const int MAXN = 1e6 + 10, INF = 1e9 + 7;
using namespace std;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M;
LL g[MAXN], f[MAXN];
char sa[MAXN], sb[MAXN];
int ta[MAXN], tb[MAXN], a[MAXN], b[MAXN], rev[MAXN], lim;
LL sqr2(int x) {return 1ll * x * x;}
LL sqr3(int x) {return 1ll * x * x * x;}
const double PI = acos(-1);
struct com {
double x, y;
com operator * (const com &rhs) const {
return {x * rhs.x - y * rhs.y, x * rhs.y + y * rhs.x};
}
com operator + (const com &rhs) const {
return {x + rhs.x, y + rhs.y};
}
com operator - (const com &rhs) const {
return {x - rhs.x, y - rhs.y};
}
}A[MAXN], B[MAXN];
void FFT(com *A, int lim, int type) {
for(int i = 0; i < lim; i++) if(i < rev[i]) swap(A[i], A[rev[i]]);
for(int mid = 1; mid < lim; mid <<= 1) {
com wn = {cos(PI / mid), type * sin(PI / mid)};
for(int i = 0; i < lim; i += (mid << 1)) {
com w = {1, 0};
for(int j = 0; j < mid; j++, w = w * wn) {
com x = A[i + j], y = w * A[i + j + mid];
A[i + j] = x + y;
A[i + j + mid] = x - y;
}
}
}
if(type == -1) {
for(int i = 0; i <= lim; i++) A[i].x /= lim;
}
}
void mul(int *b, int *a) {
memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B));
for(int i = 0; i < N; i++) B[i].x = b[i];
for(int i = 0; i < M; i++) A[i].x = a[i];
FFT(B, lim, 1);
FFT(A, lim, 1);
for(int i = 0; i < lim; i++) B[i] = B[i] * A[i];
FFT(B, lim, -1);
for(int i = M - 1; i <= N; i++)
f[i] += round(B[i].x);
}
signed main() {
//freopen("2.in", "r", stdin); freopen("b.out", "w", stdout);
M = read(); N = read();
scanf("%s %s", sa, sb);
for(int i = 0; i < M; i++) ta[i] = (sa[i] == '*' ? 0 : sa[i] - 'a' + 1);
for(int i = 0; i < N; i++) tb[i] = (sb[i] == '*' ? 0 : sb[i] - 'a' + 1);
reverse(tb, tb + N); int len = 0; lim = 1;
while(lim <= N + M) len++, lim <<= 1;
for(int i = 0; i < lim; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << len - 1); for(int i = 0; i < N; i++) b[i] = sqr3(tb[i]);
for(int i = 0; i < M; i++) a[i] = ta[i];
mul(b, a); for(int i = 0; i < N; i++) b[i] = -2 * sqr2(tb[i]);
for(int i = 0; i < M; i++) a[i] = sqr2(ta[i]);
mul(b, a); for(int i = 0; i < N; i++) b[i] = tb[i];
for(int i = 0; i < M; i++) a[i] = sqr3(ta[i]);
mul(b, a); int ans = 0;
for(int i = M - 1; i < N; i++)
if(!f[i]) ans++; printf("%d\n", ans); for(int i = N - 1; i >= M - 1; i--)
if(!f[i])
printf("%d ", N - i); return 0;
}
/*
3 7
a*b
aebr*ob
*/

BZOJ4259: 残缺的字符串(FFT 字符串匹配)的更多相关文章

  1. P4173 残缺的字符串(FFT字符串匹配)

    P4173 残缺的字符串(FFT字符串匹配) P4173 解题思路: 经典套路将模式串翻转,将*设为0,设以目标串的x位置匹配结束的匹配函数为\(P(x)=\sum^{m-1}_{i=0}[A(m-1 ...

  2. BZOJ4259:残缺的字符串(FFT)

    Description 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同 ...

  3. Luogu P4173 残缺的字符串-FFT在字符串匹配中的应用

    P4173 残缺的字符串 FFT在字符串匹配中的应用. 能解决大概这种问题: 给定长度为\(m\)的A串,长度为\(n\)的B串.问A串在B串中的匹配数 我们设一个函数(下标从\(0\)开始) \(C ...

  4. luoguP4173 残缺的字符串 FFT

    luoguP4173 残缺的字符串 FFT 链接 luogu 思路 和昨天做的题几乎一样. 匹配等价于(其实我更喜欢fft从0开始) \(\sum\limits_{i=0}^{m-1}(S[i+j]- ...

  5. 【BZOJ4259】残缺的字符串 FFT

    [BZOJ4259]残缺的字符串 Description 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时, ...

  6. BZOJ4259 残缺的字符串 【fft】

    题目 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同程度的残缺. 你想 ...

  7. BZOJ4259残缺的字符串

    题目描述 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同程度的残缺. ...

  8. CF528D Fuzzy Search 和 BZOJ4259 残缺的字符串

    Fuzzy Search 给你文本串 S 和模式串 T,求 S 的每个位置是否能模糊匹配上 T. 这里的模糊匹配指的是把 T 放到 S 相应位置上之后,T 中每个字符所在位置附近 k 个之内的位置上的 ...

  9. 洛谷 P4173 残缺的字符串 (FFT)

    题目链接:P4173 残缺的字符串 题意 给定长度为 \(m\) 的模式串和长度为 \(n\) 的目标串,两个串都带有通配符,求所有匹配的位置. 思路 FFT 带有通配符的字符串匹配问题. 设模式串为 ...

随机推荐

  1. MySQL:基础架构和工作流程

    [参考文章]:01|基础架构:一条查询语句的执行流程 1. 基本架构 大体来说,MySQL可以分为Server层和存储引擎两部分. Server层包括链接器,分析器,优化器,执行器等,涵盖大多数核心服 ...

  2. Java的面向对象(初涉)

    Java的面向对象(初涉) 面向对象的分析根据抽象关键的问题域来分解系统.面向对象的设计是一种提供符号设计系统的面向对象的实现过程,它用非常接近实际领域术语的方法把系统构造成"现实世界&qu ...

  3. .NET手记-友盟消息推送服务器端加密算法的实现

    最近为App开发消息推送功能,这里我们采用了友盟的消息推送服务,但其后台简陋,可定制化程度低,所以决定接入服务器端API,在自己的服务器上部署一套推送服务. 其中涉及到很多问题,首先要解决的就是与友盟 ...

  4. vue项目打包上线时的配置操作

    vue的图片路径,和背景图片路径打包后错误解决 2017-12-11 16:00 by muamaker, 7037 阅读, 0 评论, 收藏, 编辑 最近在研究vue,老实的按照官网提供的,搭建的了 ...

  5. 取消vim打开文件全是黄色方法

    如下图: 取消方法: 按下esc键 :nohl 回车

  6. library Makefiles

    libpng library Makefile LOCAL_PATH:= $(call my-dir) include $(CLEAR_VARS) LS_C=$(subst $(1)/,,$(wild ...

  7. NAT转换、VLAN与Trunk(特典:ACL初步)

    一.NAT(网络地址转换) 即公有地址转换为私有地址 私有地址段(非公网地址,即公网不识别) A       10.0.0.0            10.255.255.255 B       17 ...

  8. Spring Boot 解决方案 - 配置

    习惯优于配置 Spring Boot 项目的重要思想就是"习惯优于配置",这也是为什么该项目诞生的原因,让开发者免于 Spring 生态中各种项目的配置.尽管如此,但项目中完全零配 ...

  9. centos swap

    SWAP是Linux中的虚拟内存,用于扩充物理内存不足而用来存储临时数据存在的.它类似于Windows中的虚拟内存.在Windows中,只可以使用文件来当作虚拟内存.而linux可以文件或者分区来当作 ...

  10. array与xml转换实现(转)

    <?php function xml_encode($data, $charset = 'utf-8', $root = 'so') { $xml = '<?xml version=&qu ...