题目

一条街上有\(n\) 个点,坐标为\(x_i\) , 店的种类为\(t_i\) , 开业时间为 \([a_i,b_i]\) ;

定义一种类型到一个点的距离为这种类的点到这个点的最近距离 ;

定义一个点的不方便度为此时所有所有种类的店离这个点的距离的最大值(种类不足直接为-1);

给出种类总数和询问数 \(m\) , 回答在 \(y_j\) 时间下,位置 \(l_j\) 的不方便度 ;

$1 \le n , q \le 3 \times 10^5 \ , \ 1 \le k \le n $

$ 1 \le x_i,a_i,b_i \le 10^9 \ , \ 1 \le t_i \le k \ , \ a_i \le b_i $

$1 \le l_i \ , \ y_i \le 10^8 $

题解

  • 对时间做扫描线,只需要维护支持加入和删除点的查询;

  • 二分答案,考虑在$ [ x - mid , x + mid] $中间是否存在所有颜色的点;

  • 用 \(set\) 维护每种颜色的前驱pre,条件转化成: \((x+mid,inf)\) 的 \(mn \{ pre \} \ge x - mid\)

  • 为了方便你可以设置一个-inf点和inf点,并把所有颜色都先分别扔一个到inf和-inf上 ;

  • 用线段树套堆就可以做到$n \ log^2 n $ , 在线段树里面二分 \(x+ans\) 的位置即可做到 $n log \ n $ ;

//很清新的数据结构;
#include<bits/stdc++.h>
#define inf (1e9 + 1)
using namespace std;
const int N=300010;
int n,K,q,tot,cnt,ans[N];
multiset<int>s[N],ss[N*64];
multiset<int>::iterator it,itt;
int rt,mn[N*64],ls[N*64],rs[N*64],sz;
struct data{
int x,c,t,op;
bool operator <(const data&A)const{return t==A.t?op<A.op:t<A.t;}
}A[N<<2];
char gc(){
static char*p1,*p2,S[1000000];
if(p1==p2)p2=(p1=S)+fread(S,1,1000000,stdin);
return(p1==p2)?EOF:*p1++;
}
int rd(){
int x=0;char c=gc();
while(c<'0'||c>'9')c=gc();
while(c>='0'&&c<='9')x=x*10+c-'0',c=gc();
return x;
}
void update(int&k,int l,int r,int x,int add,int del){
if(!k)k=++sz;
if(l==r){
if(~add)ss[k].insert(add);
if(~del)ss[k].erase(ss[k].find(del));
mn[k]=ss[k].empty() ? inf : *ss[k].begin();//
return ;
}
int mid=(l+r)>>1;
if(x<=mid)update(ls[k],l,mid,x,add,del);
else if(x>mid)update(rs[k],mid+1,r,x,add,del);
mn[k]=min(mn[ls[k]],mn[rs[k]]);
}
int query(int x){
int k=rt,l=1,r=inf,mnv=inf;//
while(l<r){
int mid=(l+r)>>1,tmp=min(mnv,mn[rs[k]]);
if(mid>=x&&tmp>=2*x-mid)k=ls[k],r=mid,mnv=tmp;
else k=rs[k],l=mid+1;
}
return l - x;
}
int main(){
// freopen("A.in","r",stdin);
// freopen("A.out","w",stdout);
n=rd();K=rd();q=rd();mn[0]=inf;//
for(int i=1;i<=K;++i)s[i].insert(-inf),s[i].insert(inf);//
for(int i=1;i<=n;++i){
int x=rd(),t=rd(),a=rd(),b=rd();
A[++tot]=(data){x,t,a,0};
A[++tot]=(data){x,t,b+1,1};
}
for(int i=1;i<=q;++i){
int l=rd(),y=rd();
A[++tot]=(data){l,i,y,2};
}
sort(A+1,A+tot+1);
for(int i=1;i<=K;++i)update(rt,1,inf,inf,-inf,-1);//
for(int i=1;i<=tot;++i){
int opt=A[i].op,c=A[i].c,x=A[i].x;
if(!opt){
it=itt=s[c].upper_bound(x);--itt;
update(rt,1,inf,*it,x,*itt);
update(rt,1,inf,x,*itt,-1);
if(s[c].size()==2)cnt++;
s[c].insert(x);
}else if(opt&1){
it=itt=s[c].upper_bound(x);--itt;--itt;
update(rt,1,inf,x,-1,*itt);
update(rt,1,inf,*it,*itt,x);
s[c].erase(++itt);
if(s[c].size()==2)cnt--;
}else ans[c]=cnt<K?-1:query(x);
}
for(int i=1;i<=q;++i)printf("%d\n",ans[i]);
return 0;
}

[loj2585][APIO2018]新家的更多相关文章

  1. 「APIO2018新家」

    「APIO2018新家」 题目描述 五福街是一条笔直的道路,这条道路可以看成一个数轴,街上每个建筑物的坐标都可以用一个整数来表示.小明是一位时光旅行者,他知道在这条街上,在过去现在和未来共有 \(n\ ...

  2. LOJ.2585.[APIO2018]新家(二分 线段树 堆)

    LOJ 洛谷 UOJ BZOJ 四OJ Rank1 hhhha 表示这个b我能装一年→_→ 首先考虑离线,将询问按时间排序.对于每个在\([l,r]\)出现的颜色,拆成在\(l\)加入和\(r+1\) ...

  3. BZOJ5462 APIO2018新家(线段树+堆)

    一个显然的做法是二分答案后转化为查询区间颜色数,可持久化线段树记录每个位置上一个同色位置,离线后set+树状数组套线段树维护.这样是三个log的. 注意到我们要知道的其实只是是否所有颜色都在该区间出现 ...

  4. [BZOJ5462][APIO2018]新家(线段树+堆)

    其实这个题第一反应一定是线段树分治,但是这样反而更难考虑了(实际上是可做的但很难想到),可见即使看上去最贴切的算法也未必能有效果. 考虑这个DS题,没有什么模型的转化,可能用到的无非就是线段树.平衡树 ...

  5. 【APIO2018】新家(线段树)

    [APIO2018]新家(线段树) 题面 UOJ 洛谷 BZOJ 题解 论比赛时想不到二分的危害,就只能Cu滚粗 既然不要在线,那么考虑离线做法. 既然时间是区间,那么显然按照时间顺序处理答案. 显然 ...

  6. LOJ #2585. 「APIO2018」新家

    #2585. 「APIO2018」新家 https://loj.ac/problem/2585 分析: 线段树+二分. 首先看怎样数颜色,正常的时候,离线扫一遍右端点,每次只记录最右边的点,然后查询左 ...

  7. 此博客主人已搬家访问新家地址:http://write.blog.csdn.net/postlist

    此博客主人已搬家访问新家地址:http://write.blog.csdn.net/postlist

  8. BZOJ 3631 【JLOI2014】 松鼠的新家

    Description 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真的住在"树&q ...

  9. 【BZOJ-3631】松鼠的新家 树形DP?+ 倍增LCA + 打标记

    3631: [JLOI2014]松鼠的新家 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1231  Solved: 620[Submit][Stat ...

随机推荐

  1. c#基础系列1---深入理解值类型和引用类型

    "大菜":源于自己刚踏入猿途混沌拾起,自我感觉不是一般的菜,因而得名"大菜",于自身共勉. 不知不觉已经踏入坑已10余年之多,对于c#多多少少有一点自己的认识, ...

  2. WordPress更新提示无法创建目录的解决方案

    上一篇我们说到无法连接FTP服务器,我们已经完美的解决了,然后...发现...还是无法更新,啥情况??? 提示为无法创建目录 原因是执行更新程序的是www用户, 解决方案如下: 需要把插件或主程序下载 ...

  3. sheet制作返回按钮

    =HYPERLINK("#目录!A1","目录!A1") =HYPERLINK("#"&A2&"!A1" ...

  4. C++课程学习建议

    从C到C++,学院都采用了机房授课模式,也在探索更为高效的实践与理论融合的教学方法,对于课程学习来说,仍有以下建议: 1.多看书.看书是理解基本概念的必备手段.也是学习的根本.应将课前预习.课后复习联 ...

  5. 5-Python3从入门到实战—基础之数据类型(列表-List)

    Python从入门到实战系列--目录 列表定义 list:列表(list)是Python内置的一种数据类型,list是一种有序的集合,索引从0开始,可以进行截取.组合等: //创建列表 list1 = ...

  6. 基于SSH实现员工管理系统之框架整合篇

    本篇文章来源于:https://blog.csdn.net/zhang_ling_yun/article/details/77803178 以下内容来自慕课网的课程:基于SSH实现员工管理系统之框架整 ...

  7. org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'stu' defined in class path resource [applicationContext.xml]: Instantiation of bean failed; nested exception is

    org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'stu' defined ...

  8. [CB转帖]台湾晶圆厂产能居全球第一 大陆排名第五但增长最多

    台湾晶圆厂产能居全球第一 大陆排名第五但增长最多 据台湾地区媒体报道,近日市场调查机构IC Insights发布了各个地区或国家晶圆厂月产能排名,其中台湾地区排名第一,韩国排名第二,日本排名第三,美国 ...

  9. 转帖: Serverless架构模式简介

    Serverless架构模式简介   原贴地址:https://blog.csdn.net/chdhust/article/details/71250099?utm_medium=referral&a ...

  10. Ajax 響應

    獲取服務器的響應內容,可以使用responseText或者responseXML屬性 responseText:獲取字符串形式的相應內容,除了XML的響應內容以外可用 responseXML:獲取XM ...